13 research outputs found

    Integrating energy access, efficiency and renewable energy policies in Sub-Saharan Africa: a model-based analysis

    Get PDF
    The role of energy in social and economic development is recognised by sustainable development goal 7 that targets three aspects of energy access: ensure universal access to affordable, reliable and modern energy services, substantially increase the share of renewable energy, and double the global rate of improvement in energy efficiency. With the projected increase in population, income and energy access in Sub-Saharan Africa, demand for energy services is expected to increase. This increase can be met through increasing the supply while at the same time improving households' energy efficiency. In this paper, we explore the interactions between the three SDG7 targets by applying two Integrated Assessment Models, IMAGE and MESSAGE, that incorporate socio-economic heterogeneity of the end-user. The results of the study depict the synergistic relationships between the three SDG7 objectives. Relative to pursuing only the universal access target, integration of all three targets could i) reduce residential final energy consumption by up to 25%, enabling the use of mini-grid and stand-alone systems to provide better energy services, ii) cut annual energy-use-related residential emissions by a third, and iii) lower energy related investments by up to 30% to save scarce finance

    Assuring the integrity of offshore carbon dioxide storage

    Get PDF
    Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes

    Estimation of the Vertical Land Motion from GNSS Time Series and Application in Quantifying Sea-Level Rise

    No full text
    Sea-level rise observed at tide gauges must be corrected for vertical land motion, observed with GNSS, to obtain the absolute sea-level rise with respect to the centre of the Earth. Both the sea-level and vertical position time series contain temporal correlated noise that need to be taken into account to obtain the most accurate rate estimates and to ensure realistic uncertainties. Satellite altimetry directly observes absolute sea-level rise but these time series also exhibit colored noise. In this chapter we present noise models for these geodetic time series such as the commonly used first order Auto Regressive (AR), the General Gauss Markov (GGM) and the ARFIMA model. The theory is applied to GNSS and tide gauge data from the Pacific Northwest coast

    Assuring the integrity of offshore carbon dioxide storage

    No full text
    Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes

    Assuring the integrity of offshore carbon dioxide storage

    No full text
    Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes

    Assuring the integrity of offshore carbon dioxide storage

    No full text
    Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes
    corecore