605 research outputs found

    Warning! The use of meteorological information during a flash-flood warning process

    Get PDF
    Warning is a key issue to reduce flash floods impacts. But, despite many studies, local and national authorities still struggle to issue good flash floods warnings. We will argue that this failure results from a classical approach of warnings, based on a strict separation between the <i>assessment world</i> and the <i>action world</i>. We will go further than the previous criticisms (Pielke and Carbone, 2002) and show that forecasters, decision makers, emergency services and local population have quite similar practices during a flash-flood warning. Focusing on the use of meteorological information in the warning process, our case study shows that more research about the real practices of stakeholders would be another step towards integrated studies

    Street Performance Assessment in Havana, Cuba

    Get PDF
    This note summarises the outcomes of a 'walkshop' conducted in May 2019 with local residents in Havana, Cuba, including practitioners from the national and municipal planning and transport authorities in Havana, researchers, and students. Participants walked along Galiano Street in the area of Centro Habana and completed a street performance assessment for in Havana, Cuba. Participants walked along the street and assessed 23 attributes of the street environment

    Mapping participatory planning in Havana: patchwork legacies for a strengthened local governance

    Get PDF
    In 2019, Cuba approved a new political constitution that calls for deepening citizen participation to strengthen local governance. The emerging decentralization processes and the role of new actors in urban development open new possibilities for inclusive planning. While citizen participation is widely documented in the global South and under Western liberal democracy regimes, participatory urban planning in the context of Southern socialist cities such as Havana has been less scrutinized. This paper aims at mapping the framings, trajectories and legacies of such participatory planning initiatives. Based on mapping workshops and desktop research, we find that participatory initiatives within Havana are spatially dispersed, sporadic, lacking at the city level, and occurring in isolation at the neighbourhood level. We argue that establishing sustained participatory urban planning practices in Havana requires decision makers to scale outwards and upwards the lessons learned from existing initiatives to foster a city-wide participatory planning strategy

    Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty Liver Disease

    Get PDF
    Methionine metabolism plays a central role in methylation reactions, production of glutathione and methylarginines, and modulating homocysteine levels. The mechanisms by which these are affected in NAFLD are not fully understood. The aim is to perform a metabolomic, molecular and epigenetic analyses of hepatic methionine metabolism in diet-induced NAFLD. Female 129S1/SvlmJ;C57Bl/6J mice were fed a chow (n = 6) or high-fat high-cholesterol (HFHC) diet (n = 8) for 52 weeks. Metabolomic study, enzymatic expression and DNA methylation analyses were performed. HFHC diet led to weight gain, marked steatosis and extensive fibrosis. In the methionine cycle, hepatic methionine was depleted (30%, p\u3c 0.01) while s-adenosylmethionine (SAM)/methionine ratio (p\u3c 0.05), s-adenosylhomocysteine (SAH) (35%, p\u3c 0.01) and homocysteine (25%, p\u3c 0.01) were increased significantly. SAH hydrolase protein levels decreased significantly (p Dnmt3adecreased, the global DNA methylation was unaltered. Among individual genes, only HMG-CoA reductase (Hmgcr) was hypermethylated, and no methylation changes were observed in fatty acid synthase (Fasn), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NfÎşb1), c-Jun, B-cell lymphoma 2 (Bcl-2) and Caspase 3. NAFLD was associated with hepatic methionine deficiency and homocysteine elevation, resulting mainly from impaired homocysteine remethylation, and aberrancy in methyltransferase reactions. Despite increased PRMT1 expression, hepatic ADMA was depleted while circulating ADMA was increased, suggesting increased export to circulation

    Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB.

    Get PDF
    MicroRNAs regulate pathways contributing to oncogenesis, and thus the mechanisms causing dysregulation of microRNA expression in cancer are of significant interest. Mature mir-29b levels are decreased in malignant cells, and this alteration promotes the malignant phenotype, including apoptosis resistance. However, the mechanism responsible for mir-29b suppression is unknown. Here, we examined mir-29 expression from chromosome 7q32 using cholangiocarcinoma cells as a model for mir-29b downregulation. Using 5\u27 rapid amplification of cDNA ends, the transcriptional start site was identified for this microRNA locus. Computational analysis revealed the presence of two putative E-box (Myc-binding) sites, a Gli-binding site, and four NF-kappaB-binding sites in the region flanking the transcriptional start site. Promoter activity in cholangiocarcinoma cells was repressed by transfection with c-Myc, consistent with reports in other cell types. Treatment with the hedgehog inhibitor cyclopamine, which blocks smoothened signaling, increased the activity of the promoter and expression of mature mir-29b. Mutagenesis analysis and gel shift data are consistent with a direct binding of Gli to the mir-29 promoter. Finally, activation of NF-kappaB signaling, via ligation of Toll-like receptors, also repressed mir-29b expression and promoter function. Of note, activation of hedgehog, Toll-like receptor, and c-Myc signaling protected cholangiocytes from TRAIL-induced apoptosis. Thus, in addition to c-Myc, mir-29 expression can be suppressed by hedgehog signaling and inflammatory pathways, both commonly activated in the genesis of human malignancies

    Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis.

    Get PDF
    BACKGROUND & AIMS: Saturated free fatty acids induce hepatocyte lipoapoptosis. This lipotoxicity involves an endoplasmic reticulum stress response, activation of JNK, and altered expression and function of Bcl-2 proteins. The mono-unsaturated free fatty acid palmitoleate is an adipose-derived lipokine which suppresses free fatty acid-mediated lipotoxicity by unclear mechanisms. Herein we examined the mechanisms responsible for cytoprotection. METHODS: We employed isolated human and mouse primary hepatocytes, and the Huh-7 and Hep 3B cell lines for these studies. Cells were incubated in presence and absence of palmitate (16:0), stearate (18:0), and or palmitoleate (16:1, n-7). RESULTS: Palmitoleate significantly reduced lipoapoptosis by palmitate or stearate in both primary cells and cell lines. Palmitoleate accentuated palmitate-induced steatosis in Huh-7 cells excluding inhibition of steatosis as a mechanism for reduced apoptosis. Palmitoleate inhibited palmitate induction of the endoplasmic reticulum stress response as demonstrated by reductions in CHOP expression, eIF2-alpha phosphorylation, XBP-1 splicing, and JNK activation. Palmitate increased expression of the BH3-only proteins PUMA and Bim, which was attenuated by palmitoleate. Consistent with its inhibition of PUMA and Bim induction, palmitoleate prevented activation of the downstream death mediator Bax. CONCLUSIONS: These data suggest palmitoleate inhibits lipoapoptosis by blocking endoplasmic reticulum stress-associated increases of the BH3-only proteins Bim and PUMA

    A role for miR-296 in the regulation of lipoapoptosis by targeting PUMA.

    Get PDF
    Saturated free fatty acids (FFA) induce hepatocyte lipoapoptosis, a key mediator of liver injury in nonalcoholic fatty liver disease (NAFLD). Lipoapoptosis involves the upregulation of the BH3-only protein PUMA, a potent pro-apoptotic protein. Given that dysregulation of hepatic microRNA expression has been observed in NAFLD, we examined the role of miRNA in regulating PUMA expression during lipotoxicity. By in silico analysis, we identified two putative binding sites for miR-296-5p within the 3\u27 untranslated region (UTR) of PUMA mRNA. Enforced miR-296-5p levels efficiently reduced PUMA protein expression in Huh-7 cells, while antagonism of miR-296-5p function increased PUMA cellular levels. Reporter gene assays identified PUMA 3\u27UTR as a direct target of miR-296-5p. The saturated FFA, palmitate, repressed miR-296-5p expression; and Huh-7 cells were sensitized to palmitate-induced lipotoxicity by antagonism of miR-296-5p function using a targeted locked nucleic acid (LNA). Finally, miR-296-5p was reduced in liver samples from nonalcoholic steatohepatitis (NASH) patients compared with patients with simple steatosis (SS) or controls. Also miR-296-5p levels inversely varied with PUMA mRNA levels in human liver specimens. Our results implicate miR-296-5p in the regulation of PUMA expression during hepatic lipoapoptosis. We speculate that enhancement of miR-296-5p expression may represent a novel approach to minimize apoptotic damage in human fatty liver diseases

    Saturated free fatty acids induce cholangiocyte lipoapoptosis

    Get PDF
    Recent studies have identified a cholestatic variant of nonalcoholic fatty liver disease (NAFLD) with portal inflammation and ductular reaction. Based on reports of biliary damage, as well as increased circulating free fatty acids (FFAs) in NAFLD, we hypothesized the involvement of cholangiocyte lipoapoptosis as a mechanism of cellular injury. Here, we demonstrate that the saturated FFAs palmitate and stearate induced robust and rapid cell death in cholangiocytes. Palmitate and stearate induced cholangiocyte lipoapoptosis in a concentration-dependent manner in multiple cholangiocyte-derived cell lines. The mechanism of lipoapoptosis relied on the activation of caspase 3/7 activity. There was also a significant up-regulation of the proapoptotic BH3-containing protein, PUMA. In addition, palmitate-induced cholangiocyte lipoapoptosis involved a time-dependent increase in the nuclear localization of forkhead family of transcription factor 3 (FoxO3). We show evidence for posttranslational modification of FoxO3, including early (6 hours) deacetylation and dephosphorylation that coincide with localization of FoxO3 in the nuclear compartment. By 16 hours, nuclear FoxO3 is both phosphorylated and acetylated. Knockdown studies confirmed that FoxO3 and its downstream target, PUMA, were critical for palmitate- and stearate-induced cholangiocyte lipoapoptosis. Interestingly, cultured cholangiocyte-derived cells did not accumulate appreciable amounts of neutral lipid upon FFA treatment. CONCLUSION: Our data show that the saturated FFAs palmitate and stearate induced cholangiocyte lipoapoptosis by way of caspase activation, nuclear translocation of FoxO3, and increased proapoptotic PUMA expression. These results suggest that cholangiocyte injury may occur through lipoapoptosis in NAFLD and nonalcoholic steatohepatitis patients
    • …
    corecore