269 research outputs found

    Étude du crabe rouge profond Geryon quinquedens en Côte d'Ivoire. 2 - Éléments de biologie et d'écologie avec références aux résultats obtenus au Congo

    Get PDF
    Geryon quinquedens is present along the West African continental slope at depths from 300 to 1000 m, on silt-clay sediments. Geryon is a cold and rather poorly oxygenated water loving species. It is easily caught by traps as it is a scavenger and predatory crustacea. In a given area its distribution does not appear to be homogeneous: for example, densities of red crabs are higher in the eastern and western region of Côte d'Ivoire than in the central zone. Similar observations can be made off Congo, Angola and United States. It can be assumed that there is a relation between the abundance of Geryon and the productivity level of the area. Geographical variations of sex ratio are suspected to be correlated with the density distribution. Males and females have not the same bathymetric distribution: females are only common in the shallower waters (300-500 m) whereas males are present in the whole biotope. Seasonal migrations occur down and up the slope in both the sexes and are certainly related to the reproductive biology. Knowledge of the reproductive biology is also necessary to understand fishing-trap catch rate: egg maturation extends over several months and ovigerous females are exceptionally caught by traps; males also are less available during the same period (March to August) when migrations are less important; in this period, mean size increases and probably this happens at the end of a moult. From September to February the catch-rates increase. Growth is slow compared with other littoral Guinean Crustacea (Peneides). Females become sexually mature at a size of 80 mm (carapace width): modification in the allometric relations of abdomen and carapace are then conspicuous

    Pre-treatment of industrial olive oil mill effluent using low dosage health-friendly cationic polyelectrolytes

    Get PDF
    Olive oil production involves a significant annual release of industrial olive oil mill effluent (OME) to the environment. These discharges bring serious environmental problems since they are extremely hazardous for the aquatic environment due to their organic matter and high turbidity levels. The present study comprises the development of new, hydrophobically modified, cationic flocculants directed to oily effluents application. A health-friendly formulation was used in their synthesis process, performed by inverse-emulsion. In particular, Poly(AAm-MAPTAC) was synthesized in two different polymer compositions and, as well, with the presence of a hydrophobic monomer (Poly(AAm-MAPTAC-SMA)) at several compositions up to 8wt%. The obtained polyelectrolytes were characterized in terms of final composition, hydrodynamic diameter, zeta potential and molecular weight. Their flocculation performance was evaluated in an industrial oily effluent from an olive oil mill. Results revealed that the hydrophobic modification improves noticeably the flocculation performance of cationic polyelectrolytes in the treatment of olive oil mill effluents. In the best conditions, it was possible to achieve 90% turbidity reduction, 47% COD removal and 34% total solids removal with only 53mg/L of flocculant. Moreover, 79% of turbidity was reduced after addition of 13mg/L

    Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells

    Full text link
    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional micro-crystalline materials useful in fields as diverse as biomedicine1, materials science2, mineral flotation3 and food processing4. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials employed5-9. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.Comment: 18 pages, 5 figure

    Promising pre-clinical validation of targeted radionuclide therapy using a [131I] labelled iodoquinoxaline derivative for an effective melanoma treatment

    Full text link
    Targeted internal radionuclide therapy (TRT) would be an effective alternative to current therapies for dissemi- nated melanoma treatment. At our institution, a class of iodobenzamides has been developed as potent melanoma- seeking agents. This review described the preclinical vali- dations of a quinoxaline derivative molecule (ICF01012) as tracer for TRT application. It was selected for its high, specific and long-lasting uptake in tumour with rapid clear- ance from non-target organs providing suitable dosimetry parameters for TRT. Extended in vivo study of metabolic profiles confirmed durable tumoural concentration of the unchanged molecule form. Moreover melanin specificity of ICF01012 was determined by binding assay with syn- thetic melanin and in vivo by SIMS imaging. Then, we showed in vivo that [131I] ICF01012 treatment drastically inhibited growth of B16F0, B16Bl6 and M4Beu tumours whereas [131I] NaI or unlabelled ICF01012 treatment was without significant effect. Histological analysis showed that residual tumour cells exhibit a significant loss of aggres- siveness after treatment. This anti-tumoural effect was associated with a lengthening of the treated-mice survival time and an inhibition of lung dissemination for B16Bl6 model. Results presented here support the concept of TRT using a [131I] labelled iodoquinoxaline derivative for an effective melanoma treatment.<br /

    Measurements of Submicron Particle Adsorption and Particle Film Elasticity at Oil-Water Interfaces

    Get PDF
    The influence of particle adsorption on liquid/liquid interfacial tension is not well understood, and much previous research has suggested conflicting behaviors. In this paper we investigate the surface activity and adsorption kinetics of charge stabilized and pH-responsive polymer stabilized colloids at oil/water interfaces using two tensiometry techniques: (i) pendant drop and (ii) microtensiometer. We found, using both techniques, that charge stabilized particles had little or no influence on the (dynamic) interfacial tension, although dense silica particles affected the "apparent" measured tension in the pendent drop, due to gravity driven elongation of the droplet profile. Nevertheless, this apparent change additionally allowed the study of adsorption kinetics, which was related qualitatively between particle systems by estimated diffusion coefficients. Significant and real interfacial tension responses were measured using ∼53 nm core-shell latex particles with a pH-responsive polymer stabilizer of poly(methyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (pMMA-b-pDMAEMA) diblock copolymer. At pH 2, where the polymer is strongly charged, behavior was similar to that of the bare charge-stabilized particles, showing little change in the interfacial tension. At pH 10, where the polymer is discharged and poorly soluble in water, a significant decrease in the measured interfacial tension commensurate with strong adsorption at the oil-water interface was seen, which was similar in magnitude to the surface activity of the free polymer. These results were both confirmed through droplet profile and microtensiometry experiments. Dilational elasticity measurements were also performed by oscillation of the droplet; again, changes in interfacial tension with droplet oscillation were only seen with the responsive particles at pH 10. Frequency sweeps were performed to ascertain the dilational elasticity modulus, with measured values being significantly higher than previously reported for nanoparticle and surfactant systems, and similar in magnitude to protein stabilized droplets.</p

    Local Patch Blind Spectral Watermarking Method for 3D Graphics

    Full text link
    International audienc

    Reelin Controls Progenitor Cell Migration in the Healthy and Pathological Adult Mouse Brain

    Get PDF
    Understanding the signals that control migration of neural progenitor cells in the adult brain may provide new therapeutic opportunities. Reelin is best known for its role in regulating cell migration during brain development, but we now demonstrate a novel function for reelin in the injured adult brain. First, we show that Reelin is upregulated around lesions. Second, experimentally increasing Reelin expression levels in healthy mouse brain leads to a change in the migratory behavior of subventricular zone-derived progenitors, triggering them to leave the rostral migratory stream (RMS) to which they are normally restricted during their migration to the olfactory bulb. Third, we reveal that Reelin increases endogenous progenitor cell dispersal in periventricular structures independently of any chemoattraction but via cell detachment and chemokinetic action, and thereby potentiates spontaneous cell recruitment to demyelination lesions in the corpus callosum. Conversely, animals lacking Reelin signaling exhibit reduced endogenous progenitor recruitment at the lesion site. Altogether, these results demonstrate that beyond its known role during brain development, Reelin is a key player in post-lesional cell migration in the adult brain. Finally our findings provide proof of concept that allowing progenitors to escape from the RMS is a potential therapeutic approach to promote myelin repair

    In Vivo FRET Imaging to Predict the Risk Associated with Hepatic Accumulation of Squalene-Based Prodrug Nanoparticles.

    Get PDF
    Förster resonance energy transfer (FRET) is used here for the first time to monitor the in vivo fate of nanoparticles made of the squalene-gemcitabine prodrug and two novel derivatives of squalene with the cyanine dyes 5.5 and 7.5, which behave as efficient FRET pair in the NIR region. Following intravenous administration, nanoparticles initially accumulate in the liver, then they show loss of their integrity within 2 h and clearance of the squalene bioconjugates is observed within 24 h. Such awareness is a key prerequisite before introduction into clinical settings.journal article2018 Feb2017 11 30importedSupporting information : librement accessible sur le site de l'éditeur

    Poly(dimethylsiloxane)-Stabilized Polymer Particles from Radical Dispersion Polymerization in Nonpolar Solvent: Influence of Stabilizer Properties and Monomer Type

    Get PDF
    Particles used in electrophoretic display applications (EPD) must possess a number of specific properties ranging from stability in a nonaqueous solvent, high reflectivity, low polydispersity, and high charge density to name but a few. The manufacture of such particles is best carried out in the solvent of choice for the EPD. This opens up new interests in the study of nonaqueous dispersion polymerization methods, which deliver polymer particles suspended in low dielectric constant solvents. We explore in this article the use of a poly(dimethylsiloxane) macromonomer for the stabilization of poly(methyl methacrylate) polymer particles in dodecane, a typical solvent of choice for EPDs. The use of this stabilizer is significant for this method as it is directly soluble in the reaction medium as opposed to traditionally used poly(12-hydroxystearic acid)-based stabilizers. Additionally, the present study serves as a baseline for subsequent work, where nonaqueous dispersion polymerization will be used to create polymer particles encapsulating liquid droplets and solid pigment particles. In this article, the influence of the macromonomer molecular weight and concentration on the properties of the synthesized particles is studied. In addition, we investigate the possibility of synthesizing polymer particles from other monomers both as a comonomer for methyl methacrylate and as the only monomer in the process. The influence of macromonomer concentration is also studied throughout all experiments
    • …
    corecore