55 research outputs found
Proposal for Unambiguous Electrical Detection of Spin-Charge Conversion in Lateral Spin Valves
Efficient detection of spin-charge conversion is crucial for advancing our understanding of emergent phenomena in spin-orbit-coupled nanostructures. Here, we provide a proof of principle of an electrical detection scheme of spin-charge conversion that enables full disentanglement of competing spin-orbit coupling (SOC) transport phenomena in diffusive lateral channels, i.e., the inverse spin Hall effect and the spin galvanic effect. A suitable geometry in an applied oblique magnetic field is shown to provide direct access to SOC transport coefficients through a symmetry analysis of the output nonlocal resistance. The scheme is robust against tilting of the spin-injector magnetization, disorder, and spurious non-spin-related contributions to the nonlocal signal and can be used to probe spin-charge conversion effects in both spin- valve and hybrid optospintronic devices
Recommended from our members
Chromium nanostructures formed by dewetting of heteroepitaxial films on W(100)
In this paper, we report the surprising formation of square-based facetted islands with linear dimension of the order of 500 nm upon dewetting of a Cr multilayer onW(100).We show that these square islands are composed of
inclined facets surrounding a depressed center such that the facet slopes inward with the outer edges of the islands
thicker than the centers. The islands’ shapes do not represent traditional equilibrium crystal shapes as expected
for a Wulf construction. In situ UV and x-ray photoelectron emission microscopy allied to spatially resolved
spectroscopy throws considerable light on the nature of the dewetting and shows that the metal surface between
the islands remains covered by a thin pseudomorphic wetting layer of ∼1 ML. Low-energy electron diffraction
and scanning tunneling and atomic force microscopies allow quantification of facet slopes, and we identify a
predominance of tilted Cr(100) facets ±5◦ off of the substrate normal bound by (210) planes at ∼26◦. The
epitaxial Cr islands adopt the bulk Cr lattice constant but are tilted with respect to the surface normal.We suggest
that the Cr crystallite tilting creates a vicinal-like interface structure that determines the island morpholog
Room temperature ferroelectric and magnetic investigations and detailed phase analysis of Aurivillius phase Bi 5Ti 3Fe 0.7Co 0.3O 15 thin films
Aurivillius phase Bi 5Ti 3Fe 0.7Co 0.3O 15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn 3 substituted, Bi 5Ti 3Fe 0.7Mn 0.3O 15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, B r, of 6.37 emu/cm 3 (or 804 memu/g), remanent moment 4.99 × 10 -5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95 Fe/Co-rich spinel phase, likely CoFe 2 - xTi xO 4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi 5Ti 3Fe 0.7Co 0.3O 15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi 5Ti 3Fe 0.7Co 0.3O 15 phase is a novel ferroelectric and has potential commercial applications in high temperature piezoelectric and ferroelectric memory technologies. The implications for the conclusive demonstration of ferroelectric and ferromagnetic properties in single-phase materials of this type are discussed
Photonic Characterisation of Indium Tin Oxide as a Function of Deposition Conditions
Indium tin oxide (ITO) has recently gained prominence as a photonic nanomaterial, for example, in modulators, tuneable metasurfaces and for epsilon-near-zero (ENZ) photonics. The optical properties of ITO are typically described by the Drude model and are strongly dependent on the deposition conditions. In the current literature, studies often make several assumptions to connect the optically measured material parameters to the electrical properties of ITO, which are not always clear, nor do they necessarily apply. Here, we present a comprehensive study of the structural, electrical, and optical properties of ITO and showed how they relate to the deposition conditions. We use guided mode resonances to determine the dispersion curves of the deposited material and relate these to structural and electrical measurements to extract all relevant material parameters. We demonstrate how the carrier density, mobility, plasma frequency, electron effective mass, and collision frequency vary as a function of deposition conditions, and that the high-frequency permittivity ((Formula presented.)) can vary significantly from the value of (Formula presented.) = 3.9 that many papers simply assume to be a constant. The depth of analysis we demonstrate allows the findings to be easily extrapolated to the photonic characterisation of other transparent conducting oxides (TCOs), whilst providing a much-needed reference for the research area
Induced magnetic moment of Eu3+ ions in GaN
Magnetic semiconductors with coupled magnetic and electronic properties are of high technological and fundamental importance. Rare-earth elements can be used to introduce magnetic moments associated with the uncompensated spin of 4f-electrons into the semiconductor hosts. The luminescence produced by rare-earth doped semiconductors also attracts considerable interest due to the possibility of electrical excitation of characteristic sharp emission lines from intra 4f-shell transitions. Recently, electroluminescence of Eu-doped GaN in current-injection mode was demonstrated in p-n junction diode structures grown by organometallic vapour phase epitaxy. Unlike most other trivalent rare-earth ions, Eu3+ ions possess no magnetic moment in the ground state. Here we report the detection of an induced magnetic moment of Eu3+ ions in GaN which is associated with the 7F2 final state of 5D0→7F2 optical transitions emitting at 622 nm. The prospect of controlling magnetic moments electrically or optically will lead to the development of novel magneto-optic devices
Observation of vortex dynamics in arrays of nanomagnets
Vortex dynamics within arrays of square ferromagnetic nanoelements have been studied by time-resolved
scanningKerr microscopy (TRSKM),while x-ray photoemission electronmicroscopy has been used to investigate
the equilibrium magnetic state of the arrays. An alternating field demagnetization process was found to initialize
a distribution of equilibrium states within the individual elements of the array, including quasiuniform states
and vortex states of different chirality and core polarization. Repeated initialization revealed some evidence of
stochastic behavior during the formation of the equilibrium state. TRSKM with a spatial resolution of ∼300 nm
was used to detect vortex gyration within arrays of square nanoelements of 250-nm lateral size. Two arrays were
studied consisting of a 9 × 9 and 5 × 5 arrangement of nanoelements with 50- and 500-nm element edge-to-edge
separation to encourage strong and negligible dipolar interactions, respectively. In the 5 × 5 element array,
TRSKM images, acquired at a fixed phase of the driving microwave magnetic field, revealed differences in the
gyrotropic phase within individual elements. While some phase variation is attributed to the dispersion in the
size and shape of elements, the vortex chirality and core polarization are also shown to influence the phase. In
the 9 × 9 array, strong magneto-optical response due to vortex gyration was observed across regions with length
equal to either one or two elements. Micromagnetic simulations performed for 2 × 2 arrays of elements suggest
that particular combinations of vortex chirality and polarization in neighboring elements are required to generate
the observed magneto-optical contrast.Engineering and Physical Sciences Research Council (EPSRC
Contributions from coherent and incoherent lattice excitations to ultrafast optical control of magnetic anisotropy of metallic films
Spin-lattice coupling is one of the most prominent interactions mediating response of spin ensemble to ultrafast optical excitation. Here we exploit optically generated coherent and incoherent phonons to drive coherent spin dynamics, i.e. precession, in thin films of magnetostrictive metal Galfenol. We demonstrate unambiguously that coherent phonons, also seen as dynamical strain generated due to picosecond lattice temperature raise, give raise to magnetic anisotropy changes of the optically excited magnetic film; and this contribution may be comparable to or even dominate over the contribution from the temperature increase itself, considered as incoherent phonons
Phase-resolved x-ray ferromagnetic resonance measurements in fluorescence yield
Copyright © 2011 American Institute of PhysicsPhase-resolved x-ray ferromagnetic resonance (XFMR) has been measured in fluorescence yield, extending the application of XFMR to opaque samples on opaque substrates. Magnetization dynamics were excited in a Co50Fe50(0.7)/Ni90Fe10(5) bilayer by means of a continuous wave microwave excitation, while x-ray magnetic circular dichroism (XMCD) spectra were measured stroboscopically at different points in the precession cycle. By tuning the x-ray energy to the L-3 edges of Ni and Fe, the dependence of the real and imaginary components of the element specific magnetic susceptibility on the strength of an externally applied static bias field was determined. First results from measurements on a Co50Fe50(0.7)/Ni90Fe10(5)/Dy(1) sample confirm that enhanced damping results from the addition of the Dy cap
- …