125 research outputs found

    Active Tension Network model suggests an exotic mechanical state realized in epithelial tissues.

    Get PDF
    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal - "isogonal" - deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit y embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena

    Identification of Escherichia coli ygaQ and rpmG as novel mitomycin C resistance factors implicated in DNA repair

    Get PDF
    Using the ASKA (A Complete Set of E. coli K-12 ORF Archive) library for genome-wide screening of E. coli proteins we identified that expression of ygaQ and rpmG promotemitomycin C resistance (MMCR). YgaQ mediated MMCR was independent of homologous recombination involving RecA or RuvABC, but required UvrD. YgaQ is an uncharacterized protein homologous to a-amylases that we identified to have nuclease activity directed to single stranded DNA of 5’ flaps. Nuclease activity was inactivated by mutation of two amino acid motifs, which also abolished MMCR. RpmG is frequently annotated as a bacterial ribosomal protein, although forms an operon with MutM glycosylase and a putative deubiquitinating enzyme, YicR. RpmG associated MMCR was dependent on MutM. MMCR from RpmG resembles DNA repair phenotypes reported for ‘idiosyncratic ribosomal proteins’ in eukaryotes

    Intensity modulated radiotherapy (IMRT) in the treatment of children and Adolescents - a single institution's experience and a review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While IMRT is widely used in treating complex oncological cases in adults, it is not commonly used in pediatric radiation oncology for a variety of reasons. This report evaluates our 9 year experience using stereotactic-guided, inverse planned intensity-modulated radiotherapy (IMRT) in children and adolescents in the context of the current literature.</p> <p>Methods</p> <p>Between 1999 and 2008 thirty-one children and adolescents with a mean age of 14.2 years (1.5 - 20.5) were treated with IMRT in our department. This heterogeneous group of patients consisted of 20 different tumor entities, with Ewing's sarcoma being the largest (5 patients), followed by juvenile nasopharyngeal fibroma, esthesioneuroblastoma and rhabdomyosarcoma (3 patients each). In addition a review of the available literature reporting on technology, quality, toxicity, outcome and concerns of IMRT was performed.</p> <p>Results</p> <p>With IMRT individualized dose distributions and excellent sparing of organs at risk were obtained in the most challenging cases. This was achieved at the cost of an increased volume of normal tissue receiving low radiation doses. Local control was achieved in 21 patients. 5 patients died due to progressive distant metastases. No severe acute or chronic toxicity was observed.</p> <p>Conclusion</p> <p>IMRT in the treatment of children and adolescents is feasible and was applied safely within the last 9 years at our institution. Several reports in literature show the excellent possibilities of IMRT in selective sparing of organs at risk and achieving local control. In selected cases the quality of IMRT plans increases the therapeutic ratio and outweighs the risk of potentially increased rates of secondary malignancies by the augmented low dose exposure.</p

    Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim® in comparison to Alpha-BSM® - more bone ingrowth inside the implanted material with Ostim® compared to Alpha BSM®

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate the performance a newly developed nanocrystalline hydroxyapatite, OSTIM<sup>® </sup>following functional implantation in femoral sites in thirty-eight sheep for 1, 2 or 3 months. Ostim<sup>® </sup>35 was compared to an established calcium phosphate, Alpha BSM<sup>®</sup>.</p> <p>Methods</p> <p>Biomechanical testing, μ-CT analysis, histological and histomorphological analyses were conducted to compare the treatments including evaluation of bone regeneration level, material degradation, implant biomechanical characteristics.</p> <p>Results</p> <p>The micro-computed tomography (μCT) analysis and macroscopic observations showed that Ostim<sup>® </sup>seemed to diffuse easily particularly when the defects were created in a cancellous bone area. Alpha BSM<sup>® </sup>remained in the defect.</p> <p>The performance of Ostim was good in terms of mechanical properties that were similar to Alpha BSM<sup>® </sup>and the histological analysis showed that the bone regeneration was better with Ostim<sup>® </sup>than with Alpha BSM<sup>®</sup>. The histomorphometric analysis confirmed the qualitative analysis and showed more bone ingrowth inside the implanted material with Ostim<sup>® </sup>when compared to Alpha BSM <sup>® </sup>at all time points.</p> <p>Conclusions</p> <p>The successful bone healing with osseous consolidation verifies the importance of the nanocrystalline hydroxyapatite in the treatment of metaphyseal osseous volume defects in the metaphyseal spongiosa.</p

    Does Intensity Modulated Radiation Therapy (IMRT) prevent additional toxicity of treating the pelvic lymph nodes compared to treatment of the prostate only?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the risk of rectal, bladder and small bowel toxicity in intensity modulated radiation therapy (IMRT) of the prostate only compared to additional irradiation of the pelvic lymphatic region.</p> <p>Methods</p> <p>For ten patients with localized prostate cancer, IMRT plans with a simultaneous integrated boost (SIB) were generated for treatment of the prostate only (plan-PO) and for additional treatment of the pelvic lymph nodes (plan-WP). In plan-PO, doses of 60 Gy and 74 Gy (33 fractions) were prescribed to the seminal vesicles and to the prostate, respectively. Three plans-WP were generated with prescription doses of 46 Gy, 50.4 Gy and 54 Gy to the pelvic target volume; doses to the prostate and seminal vesicles were identical to plan-PO. The risk of rectal, bladder and small bowel toxicity was estimated based on NTCP calculations.</p> <p>Results</p> <p>Doses to the prostate were not significantly different between plan-PO and plan-WP and doses to the pelvic lymph nodes were as planned. Plan-WP resulted in increased doses to the rectum in the low-dose region ≤ 30 Gy, only, no difference was observed in the mid and high-dose region. Normal tissue complication probability (NTCP) for late rectal toxicity ranged between 5% and 8% with no significant difference between plan-PO and plan-WP. NTCP for late bladder toxicity was less than 1% for both plan-PO and plan-WP. The risk of small bowel toxicity was moderately increased for plan-WP.</p> <p>Discussion</p> <p>This retrospective planning study predicted similar risks of rectal, bladder and small bowel toxicity for IMRT treatment of the prostate only and for additional treatment of the pelvic lymph nodes.</p

    Assembling Neurospheres: Dynamics of Neural Progenitor/Stem Cell Aggregation Probed Using an Optical Trap

    Get PDF
    Optical trapping (tweezing) has been used in conjunction with fluid flow technology to dissect the mechanics and spatio-temporal dynamics of how neural progenitor/stem cells (NSCs) adhere and aggregate. Hitherto unavailable information has been obtained on the most probable minimum time (∼5 s) and most probable minimum distance of approach (4–6 µm) required for irreversible adhesion of proximate cells to occur. Our experiments also allow us to study and quantify the spatial characteristics of filopodial- and membrane-mediated adhesion, and to probe the functional dynamics of NSCs to quantify a lower limit of the adhesive force by which NSCs aggregate (∼18 pN). Our findings, which we also validate by computational modeling, have important implications for the neurosphere assay: once aggregated, neurospheres cannot disassemble merely by being subjected to shaking or by thermal effects. Our findings provide quantitative affirmation to the notion that the neurosphere assay may not be a valid measure of clonality and “stemness”. Post-adhesion dynamics were also studied and oscillatory motion in filopodia-mediated adhesion was observed. Furthermore, we have also explored the effect of the removal of calcium ions: both filopodia-mediated as well as membrane-membrane adhesion were inhibited. On the other hand, F-actin disrupted the dynamics of such adhesion events such that filopodia-mediated adhesion was inhibited but not membrane-membrane adhesion

    Stroma Regulates Increased Epithelial Lateral Cell Adhesion in 3D Culture: A Role for Actin/Cadherin Dynamics

    Get PDF
    Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures.The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability.In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity
    corecore