118 research outputs found

    An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Social Amoebae or Dictyostelia are eukaryotic microbes with a unique life cycle consisting of both uni- and multicellular stages. They have long fascinated molecular, developmental and evolutionary biologists, and <it>Dictyostelium discoideum </it>is now one of the most widely studied eukaryotic microbial models. The first molecular phylogeny of Dictyostelia included most of the species known at the time and suggested an extremely deep taxon with a molecular depth roughly equivalent to Metazoa. The group was also shown to consist of four major clades, none of which correspond to traditional genera. Potential morphological justification was identified for three of the four major groups, on the basis of which tentative names were assigned.</p> <p>Results</p> <p>Over the past four years, the Mycetozoan Global Biodiversity Survey has identified many new isolates that appear to be new species of Dictyostelia, along with numerous isolates of previously described species. We have determined 18S ribosomal RNA gene sequences for all of these new isolates. Phylogenetic analyses of these data show at least 50 new species, and these arise from throughout the dictyostelid tree breaking up many previously isolated long branches. The resulting tree now shows eight well-supported major groups instead of the original four. The new species also expand the known morphological diversity of the previously established four major groups, violating nearly all previously suggested deep morphological patterns.</p> <p>Conclusions</p> <p>A greatly expanded phylogeny of Dictyostelia now shows even greater morphological plasticity at deep taxonomic levels. In fact, there now seem to be no obvious deep evolutionary trends across the group. However at a finer level, patterns in morphological character evolution are beginning to emerge. These results also suggest that there is a far greater diversity of Dictyostelia yet to be discovered, including novel morphologies.</p

    Kin discrimination and possible cryptic species in the social amoeba Polysphondylium violaceum

    Get PDF
    Abstract Background The genetic diversity of many protists is unknown. The differences that result from this diversity can be important in interactions among individuals. The social amoeba Polysphondylium violaceum, which is a member of the Dictyostelia, has a social stage where individual amoebae aggregate together to form a multicellular fruiting body with dead stalk cells and live spores. Individuals can either cooperate with amoebae from the same clone, or sort to form clonal fruiting bodies. In this study we look at genetic diversity in P. violaceum and at how this diversity impacts social behavior. Results The phylogeny of the ribosomal DNA sequence (17S to 5.8S region) shows that P. violaceum is made up of at least two groups. Mating compatibility is more common between clones from the same phylogenetic group, though matings between clones from different phylogenetic groups sometimes occurred. P. violaceum clones are more likely to form clonal fruiting bodies when they are mixed with clones from a different group than when they are mixed with a clone of the same group. Conclusion Both the phylogenetic and mating analyses suggest the possibility of cryptic species in P. violaceum. The level of divergence found within P. violaceum is comparable to the divergence between sibling species in other dictyostelids. Both major groups A/B and C/D/E/F show kin discrimination, which elevates relatedness within fruiting bodies but not to the level of clonality. The diminished cooperation in mixes between groups suggests that the level of genetic variation between individuals influences the extent of their cooperation

    Sensitivity of Metrics of Phylogenetic Structure to Scale, Source of Data and Species Pool of Hummingbird Assemblages along Elevational Gradients

    Get PDF
    Patterns of phylogenetic structure of assemblages are increasingly used to gain insight into the ecological and evolutionary processes involved in the assembly of co-occurring species. Metrics of phylogenetic structure can be sensitive to scaling issues and data availability. Here we empirically assess the sensitivity of four metrics of phylogenetic structure of assemblages to changes in (i) the source of data, (ii) the spatial grain at which assemblages are defined, and (iii) the definition of species pools using hummingbird (Trochilidae) assemblages along an elevational gradient in Colombia. We also discuss some of the implications in terms of the potential mechanisms driving these patterns. To explore how source of data influence phylogenetic structure we defined assemblages using three sources of data: field inventories, museum specimens, and range maps. Assemblages were defined at two spatial grains: coarse-grained (elevational bands of 800-m width) and fine-grained (1-km2 plots). We used three different species pools: all species contained in assemblages, all species within half-degree quadrats, and all species either above or below 2000 m elevation. Metrics considering phylogenetic relationships among all species within assemblages showed phylogenetic clustering at high elevations and phylogenetic evenness in the lowlands, whereas those metrics considering only the closest co-occurring relatives showed the opposite trend. This result suggests that using multiple metrics of phylogenetic structure should provide greater insight into the mechanisms shaping assemblage structure. The source and spatial grain of data had important influences on estimates of both richness and phylogenetic structure. Metrics considering the co-occurrence of close relatives were particularly sensitive to changes in the spatial grain. Assemblages based on range maps included more species and showed less phylogenetic structure than assemblages based on museum or field inventories. Coarse-grained assemblages included more distantly related species and thus showed a more even phylogenetic structure than fine-grained assemblages. Our results emphasize the importance of carefully selecting the scale, source of data and metric used in analysis of the phylogenetic structure of assemblages

    Soil pH mediates the balance between stochastic and deterministic assembly of bacteria

    Get PDF
    Little is known about the factors affecting the relative influences of stochastic and deterministic processes that govern the assembly of microbial communities in successional soils. Here, we conducted a meta-analysis of bacterial communities using six different successional soil datasets distributed across different regions. Different relationships between pH and successional age across these datasets allowed us to separate the influences of successional age (i.e., time) from soil pH. We found that extreme acidic or alkaline pH conditions lead to assembly of phylogenetically more clustered bacterial communities through deterministic processes, whereas pH conditions close to neutral lead to phylogenetically less clustered bacterial communities with more stochasticity. We suggest that the influence of pH, rather than successional age, is the main driving force in producing trends in phylogenetic assembly of bacteria, and that pH also influences the relative balance of stochastic and deterministic processes along successional soils. Given that pH had a much stronger association with community assembly than did successional age, we evaluated whether the inferred influence of pH was maintained when studying globally distributed samples collected without regard for successional age. This dataset confirmed the strong influence of pH, suggesting that the influence of soil pH on community assembly processes occurs globally. Extreme pH conditions likely exert more stringent limits on survival and fitness, imposing strong selective pressures through ecological and evolutionary time. Taken together, these findings suggest that the degree to which stochastic vs. deterministic processes shape soil bacterial community assembly is a consequence of soil pH rather than successional age

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Geographic variation in plant community structure of salt marshes: species, functional and phylogenetic perspectives.

    Get PDF
    In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in ecosystems with low species diversity, functional and phylogenetic approaches may not provide additional insight over a species-based approach

    From food to pest: Conversion factors determine switches between ecosystem services and disservices

    Get PDF
    Ecosystem research focuses on goods and services, thereby ascribing beneficial values to the ecosystems. Depending on the context, however, outputs from ecosystems can be both positive and negative. We examined how provisioning services of wild animals and plants can switch between being services and disservices. We studied agricultural communities in Laos to illustrate when and why these switches take place. Government restrictions on land use combined with economic and cultural changes have created perceptions of rodents and plants as problem species in some communities. In other communities that are maintaining shifting cultivation practices, the very same taxa were perceived as beneficial. We propose conversion factors that in a given context can determine where an individual taxon is located along a spectrum from ecosystem service to disservice, when, and for whom. We argue that the omission of disservices in ecosystem service accounts may lead governments to direct investments at inappropriate targets

    Edge-Related Loss of Tree Phylogenetic Diversity in the Severely Fragmented Brazilian Atlantic Forest

    Get PDF
    Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha) forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest

    Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation

    Get PDF
    Background Social amoebae are lower eukaryotes that inhabit the soil. They are characterized by the construction of a starvation-induced multicellular fruiting body with a spore ball and supportive stalk. In most species, the stalk is filled with motile stalk cells, as represented by the model organism Dictyostelium discoideum, whose developmental mechanisms have been well characterized. However, in the genus Acytostelium, the stalk is acellular and all aggregated cells become spores. Phylogenetic analyses have shown that it is not an ancestral genus but has lost the ability to undergo cell differentiation. Results We performed genome and transcriptome analyses of Acytostelium subglobosum and compared our findings to other available dictyostelid genome data. Although A. subglobosum adopts a qualitatively different developmental program from other dictyostelids, its gene repertoire was largely conserved. Yet, families of polyketide synthase and extracellular matrix proteins have not expanded and a serine protease and ABC transporter B family gene, tagA, and a few other developmental genes are missing in the A. subglobosum lineage. Temporal gene expression patterns are astonishingly dissimilar from those of D. discoideum, and only a limited fraction of the ortholog pairs shared the same expression patterns, so that some signaling cascades for development seem to be disabled in A. subglobosum. Conclusions The absence of the ability to undergo cell differentiation in Acytostelium is accompanied by a small change in coding potential and extensive alterations in gene expression patterns

    Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China

    Get PDF
    Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones
    corecore