2,623 research outputs found

    Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    Get PDF
    Automated source extraction and parameterization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper we present a new algorithm, dubbed CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parameterization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, including also different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the ASKAP-EMU survey. The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.Comment: 15 pages, 9 figure

    Properties and Structural Studies of Multi-Wall Carbon Nanotubes-Phosphate Ester Hybrids

    Get PDF
    Long chain phosphate esters bearing at least one or two aryl groups have been synthesized and used for the preparation of stable multi-walled carbon nanotube (MWCNT) hybrids. The non-covalent interaction ester/MWCNT has been in- vestigated by several techniques (SEM, UV-vis, 31P-NMR, RAMAN). The used phosphate ester derivatives demon- strated the ability to produce an excellent dispersion of MWCNT in CHCl3. The obtained dispersions showed a great stability from one to at least three weeks in the range of concentration considered. Thermal analysis showed an increase in the decomposition temperature for the hybrids with respect to pristine MWCNT

    Mn valence instability in La2/3Ca1/3MnO3 thin films

    Full text link
    A Mn valence instability on La2/3Ca1/3MnO3 thin films, grown on LaAlO3 (001)substrates is observed by x-ray absorption spectroscopy at the Mn L-edge and O K-edge. As-grown samples, in situ annealed at 800 C in oxygen, exhibit a Curie temperature well below that of the bulk material. Upon air exposure a reduction of the saturation magnetization, MS, of the films is detected. Simultaneously a Mn2+ spectral signature develops, in addition to the expected Mn3+ and Mn4+ contributions, which increases with time. The similarity of the spectral results obtained by total electron yield and fluorescence yield spectroscopy indicates that the location of the Mn valence anomalies is not confined to a narrow surface region of the film, but can extend throughout the whole thickness of the sample. High temperature annealing at 1000 C in air, immediately after growth, improves the magnetic and transport properties of such films towards the bulk values and the Mn2+ signature in the spectra does not appear. The Mn valence is then stable even to prolonged air exposure. We propose a mechanism for the Mn2+ ions formation and discuss the importance of these observations with respect to previous findings and production of thin films devices.Comment: Double space, 21 pages, 6 figure

    Open borders, closed minds: the discursive construction of national identity in North Cyprus

    Get PDF
    The article investigates the discursive construction of a Turkish Cypriot national identity by the newspapers in North Cyprus. It questions the representation and reconstruction processes of national identity within the press and examines the various practices employed to mobilize readers around certain national imaginings. Using Critical Discourse Analysis, the article analyses news reports of the opening of border crossings in Cyprus in 2003, based on their content, the strategies used in the production of national identity and the linguistic means employed in the process. In this way, the nationalist tendencies embedded in news discourses, as well as discriminatory and exclusive practices, are sought out

    GPU-based Acceleration of Symbol Timng Recovery

    Get PDF
    This paper presents a novel implementation of graphics processing unit (GPU) based symbol timing recovery using polyphase interpolators to detect symbol timing error. Symbol timing recovery is a compute intensive procedure that detects and corrects the timing error in a coherent receiver. We provide optimal sample-time timing recovery using a maximum likelihood (ML) estimator to minimize the timing error. This is an iterative and adaptive system that relies on feedback, therefore, we present an accelerated implementation design by using a GPU for timing error detection (TED), enabling fast error detection by exploiting the 2D filter structure found in the polyphase interpolator. We present this hybrid/ heterogeneous CPU and GPU architecture by computing a low complexity and low noise matched filter (MF) while simultaneously performing TED. We then compare the performance of the CPU vs. GPU based timing recovery for different interpolation rates to minimize the error and improve the detection by up to a factor of 35. We further improve the process by utilizing GPU optimization and performing block processing to improve the throughput even more, all while maintaining the lowest possible sampling rate.Laboratory for Telecommunications SciencesNational Science Foundation (NSF

    Microscopic cluster model for the description of (18O,16O) two-neutron transfer reactions

    Get PDF
    Excitation energy spectra and absolute cross-section angular distributions were measured for the 13C(18O,16O)15C two-neutron transfer reaction at 84 MeV incident energy. Exact finite-range coupled reaction channel calculations are used to analyse the data considering both the direct two-neutron transfer and the two-step sequential mechanism. For the direct calculations, two approaches are discussed: The extreme cluster and the newly introduced microscopic cluster. The latter makes use of spectroscopic amplitudes in the centre-of-mass reference frame, derived from shell-model calculations. The results describe well the experimental cross sections

    Microscopic cluster model for the description of new experimental results on the C 13 (O 18, O 16) C 15 two-neutron transfer at 84 MeV incident energy

    Get PDF
    The C13(O18,O16)C15 reaction is studied at 84 MeV incident energy. Excitation energy spectra and absolute cross-section angular distributions for the strongest transitions are measured with good energy and angular resolutions. Strong selectivity for two-neutron configurations in the states of the residual nucleus is found. The measured cross-section angular distributions are analyzed by exact finite-range coupled reaction channel calculations. The two-particle wave functions are extracted using the extreme cluster and the independent coordinate scheme with shell-model derived coupling strengths. A new approach also is introduced, the microscopic cluster, in which the spectroscopic amplitudes in the center-of-mass reference frame are derived from shell-model calculations using the Moshinsky transformation brackets. This new model is able to describe well the experimental cross section and to highlight cluster configurations in the involved wave functions

    Characterisation of AMS H35 HV-CMOS monolithic active pixel sensor prototypes for HEP applications

    Full text link
    Monolithic active pixel sensors produced in High Voltage CMOS (HV-CMOS) technology are being considered for High Energy Physics applications due to the ease of production and the reduced costs. Such technology is especially appealing when large areas to be covered and material budget are concerned. This is the case of the outermost pixel layers of the future ATLAS tracking detector for the HL-LHC. For experiments at hadron colliders, radiation hardness is a key requirement which is not fulfilled by standard CMOS sensor designs that collect charge by diffusion. This issue has been addressed by depleted active pixel sensors in which electronics are embedded into a large deep implantation ensuring uniform charge collection by drift. Very first small prototypes of hybrid depleted active pixel sensors have already shown a radiation hardness compatible with the ATLAS requirements. Nevertheless, to compete with the present hybrid solutions a further reduction in costs achievable by a fully monolithic design is desirable. The H35DEMO is a large electrode full reticle demonstrator chip produced in AMS 350 nm HV-CMOS technology by the collaboration of Karlsruher Institut f\"ur Technologie (KIT), Institut de F\'isica d'Altes Energies (IFAE), University of Liverpool and University of Geneva. It includes two large monolithic pixel matrices which can be operated standalone. One of these two matrices has been characterised at beam test before and after irradiation with protons and neutrons. Results demonstrated the feasibility of producing radiation hard large area fully monolithic pixel sensors in HV-CMOS technology. H35DEMO chips with a substrate resistivity of 200Ω\Omega cm irradiated with neutrons showed a radiation hardness up to a fluence of 101510^{15}neq_{eq}cm2^{-2} with a hit efficiency of about 99% and a noise occupancy lower than 10610^{-6} hits in a LHC bunch crossing of 25ns at 150V
    corecore