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ABSTRACT 

Long chain phosphate esters bearing at least one or two aryl groups have been synthesized and used for the preparation 
of stable multi-walled carbon nanotube (MWCNT) hybrids. The non-covalent interaction ester/MWCNT has been in- 
vestigated by several techniques (SEM, UV-vis, 31P-NMR, RAMAN). The used phosphate ester derivatives demon- 
strated the ability to produce an excellent dispersion of MWCNT in CHCl3. The obtained dispersions showed a great 
stability from one to at least three weeks in the range of concentration considered. Thermal analysis showed an increase 
in the decomposition temperature for the hybrids with respect to pristine MWCNT. 
 
Keywords: Multi-Wall Carbon Nanotubes Hybrids; Non Covalent Functionalization; Phosphate Esters 

1. Introduction 

Since their discovery in 1991 [1], single (SW) or multi 
walled (MW) carbon nanotubes (CNT) have attracted a 
lot of attention owing to their unique physical, chemical, 
and mechanical properties [2]. CNT are expected to find 
applications in several technological contexts [2], e.g., as 
in field emission displays, supercapacitors, and molecu- 
lar computers. CNT are primarily employed in material 
science [3] as well as reinforcing agents dispersed in a 
continuous matrix polymer [4]. As a matter of fact com- 
pared to the resin base, polymers reinforced with very 
low percentages of nanoparticles (about 2% - 5%) pre- 
sent even dramatic improvements in thermo-mechanical 
properties, barrier properties and fire resistance. CNT 
may also surpass traditional fillers and fibers (e.g. glass, 
mineral fillers, calcium carbonate, graphite, metal oxides, 
carbon black) in heat resistance, dimensional stability 
and electrical conductivity. The thermal and electrical 
conductivities of PVC, one of most widely used plas- 
tic material, are remarkable modified for adding of 
MWCNT amounts [5]. Unfortunately, CNT occur in 
form of aggregated and parallel bundles, as a result of 
substantial van der Waals interactions [6], which make  

them unsatisfactorily dispersible or soluble in most 
common solvents [7]. This constitutes a crucial drawback 
in their processing. Thus, a number of different ap- 
proaches have been explored in order to disperse CNT in 
both aqueous and organic media. These approaches can 
be, in principle, divided in two categories, i.e. covalent 
[7-9] and non covalent [10-17] functionalization of the 
CNT sidewalls. Covalent functionalization involves the 
formation of new chemical bonds. A convenient method 
is to convert the CNT sidewalls to nanotube-bound car- 
boxylic acids by means of oxidative degradation [8,9]. 
Carboxylic acid functionalized CNT can be subjected, 
for instance, to further chemical modification by amide 
or ester formation. Recently, Mikhabela et al. proposed 
the covalent functionalization of the CNT sidewalls by 
phosphorylation [18]. The phosphorilated MWCNT, ob- 
tained by a 1,3-cycloaddition reaction between diphenyl 
phosphoryl azide and the double bonds of the MWCNT, 
showed a greater thermal stability than the pristine mate- 
rial. The incorporation of either the pristine or the phos- 
phorilated MWCNT into PVC polymer matrix enhanced 
its thermal properties, with the phosporilated MWCNT 
showing a larger improvement. The covalent function- 
alization of CNT involves a change of carbon hybridiza- 
tion from sp2 to sp3, sometimes leading to a possible  *Corresponding authors. 
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partial loss of conjugation which results in decreased 
electron-acceptor and/or electron-transport properties. 
For this reason, sometimes, the non-covalent function- 
alization is preferable, to the covalent ones. Non-covalent 
functionalization involves van der Waals and π-π interac- 
tions and requires the physical adsorption of suitably 
structured molecules onto the CNT sidewalls preserving 
the structural integrity of the nanotube and consequently 
its intrinsic electronic properties. This may be achieved 
by polymer wrapping, adsorption of surfactants or small 
aromatic molecules, or interaction with porphyrins or 
other biomolecules, such as DNA and peptides. Stoddart 
et al. described the fabrication of SWCNT/field-effect 
transistor devices by using hybrid SWCNT/pyrene- 
cyclodextrin materials which can serve as chemical sen- 
sors to selectively detect nonfluorescent organic mole- 
cules, owing to the molecular recognition abilities of the 
cyclodextrin torus [14]. In this work we describe, by a 
non-covalent approach, the preparation of hybrids con- 
stituted by MWCNT and long chain phosphate esters 
bearing at least one or two aryl groups (Figure 1). These 
additives were chosen in order to profit of the beneficial 
effects that phosphorilation provides to MWCNT phys- 
ico-chemical stability [18], without affecting their 
chemical structure and in order to exploit of the prox- 
imity of P-O and P=O bonds, present in additives, on the 
MWCNT surface, that could also modify their thermal 
conductivity. The obtained hybrids might be profitably 
applied as a reinforcing agent for polymeric matrix [3-5]. 
Recently, in fact, to improve the property of CNT, a new 
method of functionalization by doping CNT with inor- 
ganic atoms has been also developed [19,20]. It is known 
that phosphorus is a doping element which modifies the 
structure and properties of CNT. The experimental re- 
sults showed that P-doping changes the optical transition 
absorptions and thermal conductivity of CNT [19]. Sun 
et al. developed the synthesis and characterization of P-N 
doped MWCNT using a floating catalyst chemical vapor 
deposition method. They observed that, though small, a 
contribution to the CNT property came of also by oxi- 
dized phosphorus present on their surface. Indeed, during 
the process, the presence of oxygen, adsorbed on the 
surface of the substrate [20], oxided the phosphorus in 
P-O and P=O forms. 

2. Experimental 

2.1. Materials and Instrumentations 

All reagents needed were used as purchased (Aldrich), 
without further purification. MWCNT were provided by 
Prof. Mazzocchia of Politecnico di Milano, Italy. Nuclear 
Magnetic Resonance (NMR) spectra were recorded on a 
Bruker AC-E Series 300 spectrometer. The UV-vis 
absorbance spectra were recorded with a Beckmann DU  
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Figure 1. Structures of phosphate ester derivatives. 
 
650 spectrometer. IR spectra were recorded with a Perkin- 
Elmer mod. 297 spectrometer. 

Fluorescence spectra were acquired with a JASCO 
FP-777W spectrofluorimeter; the slit widths were fixed 
at 3 and 5 nm for the excitation and the emission, re- 
spectively, the excitation wavelength was fixed at 337 
nm and emission interval was fixed at 360 - 450 nm. 
SEM investigations were performed by using a Philips 
XL30 equipped with an Energy Dispersive X-ray device. 
Samples were supported on the stubs by carbon paint. 
The accelerating voltage ranged between 20 and 25 kV. 
Thermogravimetric analyses were performed by a Q5000 
IR apparatus (TA Instruments) under a nitrogen flow of 
25 cm3·min−1 for the sample and 10 cm3·min−1 for the 
balance. The weight of each sample was ca. 10 mg. The 
measurements were carried out by heating the sample 
from room temperature to 900˚C at a rate of 10˚C·min−1.  

Micro-Raman spectra were carried out at room tem- 
perature by a Bruker-Senterra micro-Raman equipped 
with a 532 nm diode laser excitation with 20mW power. 
Measurements were carried out in the range 3500 - 1000 
cm−1 with spectral resolution from 9 to 15 cm−1. The 
dispersions were analysed after removing of the solvent. 

2.2. Synthesis of Compounds 1,2 a-e 

The proper alkyl alcohol (10 g) was dissolved in Et2O 
(100 mL), under inert atmosphere (Ar), stirred for a few 
minutes in an ice bath, and a suitable amount of POCl3 
was added. After two days the crude compound was 
added dropwise, at 0˚C, to a solution of β-naphthol and 
NaH (molar ratio 1:1) in Et2O (500 mL) under inert at- 
mosphere (Ar). The mixture was stirred for 1 day, and 
subsequently extracted with water, then with NaOH (0.2 
N) and finally with a saturated NaCl solution. The or- 
ganic phase was dried on MgSO4, filtered and evaporated 
in vacuum. The residue was purified by chromatography 
on silica gel (eluents: petroleum ether 100%, ethyl ace- 
tate 100%). 

Compound 1a: red oil, yield 58%; 1H NMR (300 
MHz, CDCl3, δ): 7.80 (m, 3H, Ar H), 7.68 (m, 1H, Ar H), 
7.42 (m, 3H, Ar H), 4.16 (m, 4H, O-CH2), 1.68 (m, CH2, 
4H), 1.27 (m, 20H, CH2), 0.88 (t, J = 6.4 Hz, 6H, CH3) 
ppm. 13C NMR (300 MHz, CDCl3, δ): 148.87, 134.29, 
131.26, 130.16, 128.07, 127.05, 125.79, 120.49, 116.79, 
69.10, 32.12, 30.68, 29.53, 25.80, 23.00, 14.56 ppm. IR 
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(oil): ν = 1286 (s, P=O), 1246 (w, P-O-Ar), 1022 (s, 
P-O-CH2) cm−1. Anal. calcd. for C26H41O4P: C, 69.62; H, 
9.21; P, 6.90. Found: C, 69.66; H, 9.19; P, 6.93. 

Compound 1b: red oil, yield 78%; 1H NMR (300 
MHz, CDCl3, δ): 7.49 (m, 3H, Ar H), 7.44 (m, 1H, Ar H), 
7.37 (m, 3H, Ar H), 4.17 (m, 4H, O-CH2), 1.70 (quintet, 
J = 6.6 Hz, 4H, CH2), 1.31 (m, 28H, CH2), 0.88 (t, J = 
6.6 Hz, 6H, CH3) ppm. 13C NMR (300 MHz, CDCl3, δ): 
146.99, 132.41, 129.39, 128.30, 126.20, 125.19, 123.93, 
118.62, 114.93, 67.25, 30.40, 28.82, 28.02, 27.82, 27.63, 
23.94, 21.20, 12.64 ppm. IR (oil): ν = 1288 (s, P=O), 
1245 (s, O-Ar), 1020 (s, P-O-CH2) cm−1. Anal calcd. for 
C30H49O4P:C, 71.40; H, 9.79; P, 6.14. Found: C, 71.45; H, 
9.81; P, 6.12. 

Compound 1c: red oil, yield 74%; 1H NMR (300 
MHz, CDCl3, δ): 7.81 (m, 3H, Ar H), 7.69 (m, 1H, Ar H), 
7.38 (m, 3H, Ar H), 4.18 (m, 4H, O-CH2), 1.70 (quintet, 
J = 6.7 Hz, 4H, CH2), 1.25 (m, 36H, CH2), 0.89 (t, J = 
6.4 Hz, 6H, CH3) ppm. 13C NMR (300 MHz, CDCl3, δ): 
151.18, 139.09, 133.86, 129.71, 127.63, 127.46, 126.61, 
125.36, 120.06, 116.30, 68.68, 31.87, 30.26, 29.58, 29.30, 
29.06, 25.37, 22.64, 14.06 ppm. IR (oil): ν = 1287 (s, 
P=O), 1246 (s, P-O-Ar) 1052 (s, P-O-CH2) cm−1. Anal. 
calcd.for C34H57O4P:C, 72.82; H, 10.24; P, 5.42. Found: 
C, 72.79; H, 10.27; P, 5.41. 

Compound 1d: red oil, yield 71%; 1H NMR (300 
MHz, CDCl3, δ): 7.81 (m, 3H, Ar H), 7.69 (m, 1H, Ar H), 
7.42 (m, 3 H, Ar H), 4.18 (m, 4H, O-CH2), 1.65 (quintet, 
J = 6.8 Hz, 4H, CH2), 1.29 (m, 44H, CH2), 0.80 (t, J = 
6.4 Hz, 6H, CH3) ppm. 13C NMR (300 MHz, CDCl3, δ): 
152.30, 130.85, 129.75, 127.67, 127.50, 126.65, 125.40, 
120.02, 116.41, 68.71, 31.91, 30.29, 30.19, 29.64, 29.53, 
29.34, 29.09, 25.40, 22.66, 14.09 ppm. IR (oil): ν = 1281 
(s, P=O), 1246 (s, P-O-Ar), 1019 (s, P-O-CH2) cm−1. 
Anal. calcd. for C38H65O4P: C, 73.98; H, 10.62; P, 5.02. 
Found: C, 73.95; H, 10.65; P, 5.00. 

Compound 1e: red oil, yield 94%; 1H NMR (300 
MHz, CDCl3, δ): 7.81 (m, 3H, ArH), 7.69 (m, 1H, ArH), 
7.45 (m, 3H, ArH), 4.16 (m, 4H, O-CH2), 1.70 (m, 4H, 
CH2), 1.27 (m, 52H, CH2), 0.89 (t, J = 5.41 Hz, 6H, CH3) 
ppm. 13C NMR (300 MHz, CDCl3, δ): 150.85, 130.86, 
129.70, 127.62, 127.45, 126.60, 125.34, 119.97, 116.29, 
68.66, 31.86, 30.25, 29.62, 29.50, 29.30, 29.05, 25.36, 
22.63, 14.04 ppm. IR (oil): ν = 1280 (w, P=O), 1247 (s, 
P-O-Ar), 1016 (s, P-O-CH2) cm−1. Anal. calcd. for 
C42H73O4P:C, 74.96; H, 10.93; P, 4.60. Found: C, 74.99; 
H, 10.91; P, 4.62. 

Compound 2a: red oil, yield 50%; 1H NMR (300 
MHz, CDCl3, δ): 7.80 (m, 8H, Ar H), 7.42 (m, 6H, Ar H), 
4.32 (m, 2H, O-CH2), 1.72 (quintet, J = 6.9 Hz, 2H, CH2), 
1.29 (m, 10H, CH2), 0.86 (t, J = 7.2 Hz, 3H, CH3) ppm. 
13C NMR (300 MHz, CDCl3, δ): 148.25, 133.82, 131.02, 
129.91, 127.68, 127.54, 126.75, 125.59, 119.97, 116.68, 
69.72, 31.64, 30.23, 29.05, 25.32, 22.55, 14.14 ppm. IR  

(oil): ν = 1293 (s, P=O), 1241 (s, P-O-Ar), 1039 (s, 
P-O-CH2) cm−1. Anal. calcd. for C28H31O4P: C, 72.71; H, 
6.76; P, 6.70. Found: C, 72.68; H, 6.78; P, 6.72. 

Compound 2b: red oil, yield 73%; 1H NMR (300 
MHz, CDCl3, δ): 7.82 (m, 8H, Ar H), 7.46 (m, 6H, Ar H), 
4.35 (m, 2H, O-CH2), 1.74 (quintet, J = 6.9 Hz, 2H, CH2), 
1.25 (m, 14H, CH2), 0.90 (t, J = 6.4 Hz, 3H, CH3); 

13C 
NMR (300 MHz, CDCl3, δ): 148.23, 133.79, 130.99, 
129.87, 127.64, 126.71, 125.54, 119.95, 116.64, 69.67, 
31.78, 30.20, 29.37, 29.19, 28.96, 25.97, 22.60, 14.03; IR 
(oil): ν = 1293 (s, P=O), 1241 (s, P-O-Ar), 1020 (s, 
P-O-CH2) cm−1. Anal. calcd. for C30H35O4P. C, 73.45; H, 
7.19; P, 6.31. Found: C, 73.42; H, 7.22; P, 6.33. 

Compound 2c: red oil, yield 43%; 1H NMR (300 
MHz, CDCl3, δ): 7.80 (m, 8H, Ar H), 7.46 (m, 6H, Ar H), 
4.34 (m, 2H, O-CH2), 1.73 (quintet, J = 6.9 Hz, 2H, CH2), 
1.26 (m, 18H, CH2), 0.90 (t, J = 5.3 Hz, 3H, CH3) ppm. 
13C NMR (300 MHz, CDCl3, δ): 148.21, 133.78, 130.98, 
129.87, 127.64, 126.70, 126.20, 125.55, 119.93, 116.64, 
69.68, 31.83, 30.19, 29.53, 29.42, 29.36, 29.26, 28.96, 
25.29, 22.60, 14.03 ppm. IR (oil): ν = 1293 (s, P=O), 
1241(s, P-O-Ar), 1020 (s, P-O-CH2) cm−1. Anal. calcd. 
for C32H39O4P:C, 74.11; H, 7.58; P, 5.97. Found: C, 
74.14; H, 7.62; P, 5.95. 

Compound 2d: red oil, yield 55%; 1H NMR (300 
MHz, CDCl3, δ): 7.80 (m, 8H, Ar H), 7.45 (m, 6H, Ar H), 
4.33 (m, 2H, O-CH2), 1.73 (quintet, J = 6.8 Hz, 2H, CH2), 
1.26 (m, 22H, CH2), 0.89 (t, J = 5.9 Hz, 3H, CH3) ppm. 
13C NMR (300 MHz, CDCl3, δ): 148.20, 133.77, 130.98, 
129.87, 129.36, 127.64, 126.70, 125.55, 119.92, 116.64, 
69.69, 31.84, 30.19, 29.57, 29.42, 29.28, 28.96, 25.28, 
22.61, 14.10 ppm. IR (oil): ν = 1280 (s, P=O), 1243 (s, 
P-O-Ar), 1036 (s, P-O-CH2) cm−1. Anal. calcd. for 
C34H43O4P: C, 74.70; H, 7.93; P, 5.67. Found: C, 74.73; 
H, 7.91; P, 5.68. 

Compound 2e: red oil, yield 48%; 1H NMR (300 
MHz, CDCl3), δ): 7.42 (m, 8H, Ar H), 7.30 (m, 6H, Ar 
H), 4.32 (m, 2H, O-CH2), 1.71 (quintet, J = 7.2 Hz, 2H, 
CH2), 1.25 (m, 26H, CH2), 0.87 (t, J = 6.6 Hz, 3H, CH3) 
ppm. 13C NMR (300 MHz, CDCl3, δ): 145.73, 131.31, 
128.52, 127.42, 125.19, 124.26, 123.11, 117.48, 114.18, 
67.24, 29.39, 28.39, 27.73, 27.16, 26.98, 26.83, 26.51, 
22.83, 20.16, 11.59 ppm. IR (oil): ν = 1299 (w, P=O), 
1243 (w, P-O-Ar), 1020 (s, P-O-CH2) cm−1. Anal. calcd. 
for C36H47O4P: C, 75.23; H, 8.24; P, 5.39. Found: C, 
75.20; H, 8.27; P, 5.41. 

2.3. Formation of the Hybrids 

Varying weighted amounts of MWCNT (between 1 × 
10−4 and 8 × 10−4 g) were dispersed, for 30 minutes, by 
sonication in ca. 20 mL of CHCl3 at an ultrasound power 
of 200 W and a temperature of 25˚C. A CHCl3 solution 
(100 μL) of phosphate ester additive (0.1 M) was added 
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to the MWCNT dispersions and the resulting systems 
were again sonicated for further 30 minutes under the 
same condition previously reported. The final volume of 
the obtained dispersions was 100 mL and the concen- 
tration of additive was 1 × 10−4 M. 

3. Results and Discussion 

3.1. Formation and Stability of the Hybrids 

The synthesis of phosphate esters, involved in the for- 
mation of hybrids was carried out in the first by reaction 
between the alcohols, with chain length variable, and a 
suitable amount of POCl3 and then crude compounds 
were reacted with the aromatic β-naphthol to obtained 
the compounds 1,2 a-e (Figure 2). Phosphate esters ob- 
tained were used in the formation of hybrids in a concen- 
tration range lower than that of micellization [21]. The 
formation of hybrids was carried out by adding 1 × 10−4 
M of phosphate ester to a “dispersion”, at increasing 
amount, of pristine MWCNTs in CHCl3. Successful 
functionalization was immediately visible, resulting in 
the formation of dark dispersions, where the change of 
color intensity provides a qualitative indication of the 
amount of nanotube present (Figure 3(a)). By contrast, 
MWCNTs precipitated out almost completely, after the 
same sonication protocol, when the phosphate ester was 
not added (Figure 3(b)). Considering that the stability of 
a dispersion is the result of a delicate balance of attrac- 
tive and repulsive forces, it seemed that the improved 
MWCNT dispersibility is due to the interaction between 
aryl groups and the CNT surface, [12] because chain 
phosphate esters, which do not include any conjugated 
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Figure 2. Scheme of synthesis of phosphate ester derivatives 
1,2 a-e. 
 

  
(a)                         (b) 

Figure 3. (a) Dispersions of MWCNT (from 0 to 8 × 10−6 
g/mL) obtained after sonication protocol with of phosphate 
ester 1c (1 × 10−4 M) in CHCl3; (b) Dispersion of pristine 
MWCNT in CHCl3. 

structure, were weakly adsorbed on the CNT surfaces 
and gave rise to a slight increase in the CNT dispersibil- 
ity in chloroform. The dispersions were stable from one 
(2a-e) to at least three (1a-e) weeks. Dispersion stability 
was assessed by UV-vis analysis. Different dispersions, 
at varying amounts of MWCNTs (3 × 10−6, 5 × 10−6 and 
8 × 10−6 g/mL respectively) and fixed concentration of 1 
(1 × 10−4 M) were monitored for three weeks. The 
change in absorbance, at 272 nm (see below) as a func- 
tion of time was observed. Indeed, the values of absorb- 
ance of MWCNTs pristine and phosphate esters 1a-e 
were 0.12 and ca. 0.5, respectively, in contrast all hybrids 
showed absorbance values higher than 1.1 at time 0; this 
denotes that there was an interaction between phosphate 
esters and MWCNTs and so the hybrids formation. In 
Figure 4(a) is shown the plot of the absorbance as a 
function of time for dispersion with a MWCNT concen- 
tration of 5 × 10−6 g/mL. In this case we observed a curve 
that reach a plateau after ca. three weeks and the ab- 
sorbance values recorded were ca. 1.3. After three weeks, 
a slight precipitation of MWCNTs was, also, observed. 
The same considerations can be made for the dispersion 
with a MWCNT concentration of 3 × 10−6 g/mL. In  
 

 
(a) 

 
(b) 

Figure 4. Plot of the absorbance as a function of time for 
dispersion with a MWCNT concentration of (a) 5 × 10−6 
g/mL, (b) 8 × 10−6 g/mL in the presence of phosphate ester 
1c. 
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Figure 4(b) is shown the plot of the absorbance as a 
function of time for the dispersion with MWCNT con- 
centration of 8 × 10−6 g/mL. In this case we observed a 
different behavior; in fact, the absorbance value (1.42) 
initially decreases in a linear manner until at a value of ca. 
1.3 after 300 hours, successively, a slight precipitation 
was observed too. Experimental data collected, showed 
that dispersions of hybrids with phosphate esters 2a-e 
were less stable. The greater stability of the hybrids 
dispersions with phosphate esters 1a-e than with phos- 
phate esters 2a-e can be explained admitting that com- 
pounds 1a-e, with two alkyl chains, wrap the MWCNT 
surface more efficiently than the stiff compounds 2a-e, in 
spit of their higher π surface. Probably, because the 
absorbance variations are similar for the two ester classes 
it is possible to deduce that only one aromatic ring 
interacts with MWCNT surface, so the different stability 
is determined by alkyl chains length.  

3.2. Studies of Interaction between MWCNTs 
and Phosphate Ester 

3.2.1. Uv-vis Spectroscopy 
Uv-vis spectroscopy was, also, employed to confirm the 
good dispersing ability of the phosphate ester derivatives 
towards MWCNTs. In particular we recorded the UV-vis 
spectra in chloroform at 25˚C and a fixed concentration 
of the additive (1 × 10−4 M) in the presence of varying 
amounts of MWCNTs (0 - 8 × 10−6 g/mL). The occur- 
rence of the binding was evaluated by measuring the ab- 
sorbance at 272 nm (corrected for the contribution due to 
the MWCNTs), which corresponds to the maximum ab- 
sorption band of the phosphate ester. Typical trends are 
illustrated in Figure 5. 

Two different behaviors were observed depending on 
the phosphate ester structure. In some cases (1a-c, 2a-c), 
i.e. for additives having a chain length not exceeding 12 
carbon atoms, absorbance increases up to a MWCNT 
concentration of ca. 6 × 10−6 g/mL, and then shows a 
plateau at higher concentrations. This could indicate that 
progressive formation of hybrids occurs until a saturation 
level is reached. On the other hand, for additives having 
longer carbon chains (1d-e, 2d-e), no saturation trend is 
observed. 

Similar trends were observed by Morishita et al. that 
prepared macromer-grafted polymers containing suitable 
side chains and pyrene units for improving absorption on 
MWCNT surface. They observed, by UV-vis spectros- 
copy, that absorbance of hybrids was saturated as a func- 
tion of the specific surface area of the MWCNTs used 
[15]. 

Furthermore, in the case of compound 1c, we recorded 
the UV-vis spectra in chloroform at 25˚C and a fixed 
concentration of MWCNT (2 × 10−6 g/mL) in the pre- 
sence of varying amounts of phosphate ester (0 - 3 × 10−4  

 

Figure 5. Trend of the absorbance of the hybrid with the 
phosphate ester (a) 1c, (b) 1e as function of MWCNT con- 
centration (from 0 to 8 × 10−6 g/mL). 
 
M). In Figure 6 is shown the plot of the absorbance 
(corrected for the contribution due to the ester) as a func- 
tion of 1c concentration that confirms the formation of 
hybrids. At ester concentration higher than 3 × 10−4 M 
absorbance values are affected by formation of micelles. 

3.2.2. 31P-NMR Spectroscopy 
The interaction between phosphate esters and MWCNTs 
was, also, studied by means of 31P-NMR spectroscopy. 
Spectra were recorded in CHCl3 using D3PO4 as an in- 
ternal reference standard. Small but significant downfield 
shift of the 31P signal was observed for the peak relevant 
to the phosphate group of all compounds on increasing 
the amount of MWCNTs. This variation accounts for a 
change of the chemical environment for the phosphorus 
atom, consequent to the binding onto the MWCNT sur- 
face. The change in chemical shift of the phosphorus 
atom, though small, has been indeed considered signifi- 
cant in previous studies [22]. 

The 31P shift vs. MWCNT concentration gives a bell-  
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Figure 6. Trend of the absorbance of the MWCNT hybrid 
as function of 1c concentration (from 0 to 3 × 10−4 M). 
 
shaped curve, with a maximum at around ca. 4 × 10−6 
g/mL (Figure 7). This behavior is probably due to the 
release of the phosphate ester when the MWCNT con- 
centration is higher, because nanotubes prefer to aggre- 
gate each other again. 

Therefore, data indicate that the adsorption of the or- 
ganic molecules onto MWCNT surface is dependent, not 
only by the length of the side chain, but also by the con- 
centration of MWCNTs. It is also interesting to notice 
that the downfield shift suggests a weakening of the P-O 
interaction in the molecule consequent to binding. The 
same observations can be made for compound 2a-e. 

We have, also, recorded 31P spectra as a function of the 
side chain length for compounds 2a-e and 1a-e at the 
same concentration of MWCNTs (4 × 10−6 g/mL). In this 
case weren’t great differences in chemical shift and the 
results were similar to those obtained by UV-vis spec- 
troscopy. 

3.2.3. Raman Spectroscopy 
Raman spectroscopy was used to investigate the structural 
modification of MWCNTs as a consequence of the in- 
teraction with the phosphate esters. As an example, the 
Raman spectra of pristine MWCNTs and of the hybrids 
with phosphate esters 1b and 1d are reported in Figure 8. 

The Raman spectrum of pristine MWCNTs exhibits 
D-band and G-band centred at around 1339 and 1572 cm−1, 
respectively. The D-band is attributed to the presence of 
disordered structures, such as defective CNTs and de- 
formation vibrations of a hexagonal ring and amorphous 
carbon, while the G-band is related to the vibration of 
sp2-bonded carbon atoms in a two-dimensional hexago- 
nal lattice, such as in a graphitic layer. The Raman spec- 
tra of most of the samples show the same bands of the 

 

Figure 7. 31P chemical shift of the hybrid with the phos- 
phate ester 1a (1 × 10−4 M) vs. MWCNT concentration 
(from 0 to 8 × 10−6 g/mL). 
 

 

Figure 8. Raman spectra of pristine MWCNTs and hybrids 

ybrids with phosphate esters 1b, 1e and 2b, the charac- 

ariation of the intensity of D and 
G

with phosphate esters 1b and 1d. 
 
h
teristic bands of MWCNTs are covered by the organic 
molecules signals. In particular, the observed bands at 
1581 and 1441 cm−1 are due to the C=C stretching bands 
of the aromatic ring of naphthalene, while the ones ob- 
served at 1380, 1018 and 1063 cm−1 are assigned to the 
C-H in-plane deformation vibrations. The observed 
bands at 1294, 1125 and 767 cm−1 can be ascribed to the 
C-O stretching vibrations, to the P-O-C stretching vibra- 
tions and to the P=O vibration of the phosphate group, 
respectively. In addition, the symmetric and asymmetric 
stretching vibration of -CH3 and -CH2 are observed in the 
range 2700 - 3000 cm−1. 

A G-band shifts and a v
 bands is noticeable in the hybrids when compared to the 

MWCNTs pristine, thus suggesting changes in the struc- 
ture of MWCNTs. The G-band position and the IG/ID ratio 
for each hybrid were reported in Table 1. pristine MWCNTs. Only in the Raman spectra of the  

Copyright © 2013 SciRes.                                                                                 IJOC 



M. MASSARO  ET  AL. 32 

Table 1. Wavenumber of the Raman bands and scatter- 

 G-band (cm−1) D-band (cm−1) IG/ID 

ing intensities ratio (IG/ID) of pristine and functionalized 
MWCNTs.  

Sample 

MWCNTs  1572 (1) 1339 (1) 0.94 

MWCNTs/1a  1586 (1) 1349 (1) 1.09 

MWCNTs/1b  / / / 

MWCNTs/1c  1582 (1) 1347 (1) 2.  

1581 (1) 1378 (1) 1.  

1585 (1) 1346 (1) 2.  

89

MWCNTs/1d  1584 (1) 1347 (1) 2.28 

MWCNTs/1e  / / / 

MWCNTs/2a  10

MWCNTs/2b  / / / 

MWCNTs/2c  38

MWCNTs/2d  1582 (1) 1352 (1) 1.68 

MWCNTs/2e  1587 (1) 1344 (1) 2.19 

 
The changes on G-band can be explained by the strong 

at

/ID ratio indicates the MWCNTs purity, the 
ob

3.3. Hybrids Morphology: SEM Investigations 

Ts 

3.4. Thermal Stability of Hybrids: 

Ther re performed to  

tachment of phosphate esters with MWCNT surface and 
the shift could be another indication of interaction be- 
tween phosphate esters and MWCNTs; indeed, van der 
Waals forces between alkyl chain and MWCNTs surface 
affect the vibration of the graphene sheet, which generates 
the peaks of G-band, resulting into the change in the fre- 
quency [23]. 

Since the IG

served increase of the IG/ID ratio values for hybrids 
could be due “to the passivation of dangling bonds” in 
the curved graphene sheets in MWCNTs [24]; so it’s 
possible that, during the functionalization, amorphous 
carbon is removed from the surface. As it can be noted, 
the values of the IG/ID ratio increase with increasing of 
the alkyl chain length. In particular, these values are 
highest for phosphate esters with at least 12 carbon at- 
oms. 

In order to evaluate possible modifications on the MWCN
morphology due to the functionalization, a SEM investi- 
gation was performed. Pristine MWCNTs was also ob- 
served to perform the comparison. Figure 9 shows the 
SEM micrographs of the a) pristine MWCNTs and b) 
hybrid with the phosphate ester 1c. It is seen in Figure 
9(a) that MWCNTs are entangled to each other, however 
individual MWCNTs can be easily distinguished. When 
the functionalization occurred, MWCNTs bundles appear 
exfoliated, this phenomenon could be due to π-π and 
van der Waals interactions with the phosphate ester 1c 
(Figure 9(b)) [25].  

Thermogravimetric Analysis 

mogravimetric measurements we

 

Figure 9. SEM micrographs of (a) pristine MWCNTs, (b

etermine the thermal stability of MWCNT hybrids; for a 

) 
hybrid with the phosphate ester 1c. 
 
d
proper discussion of them, TG experiments were carried 
out also on the pristine components. The TG curves 
under nitrogen atmosphere are shown in Figure 10. For 
pristine nanotubes, the onset of significant weight loss 
occurs around 570˚C, and a sharp weight loss, 25.8%, 
happens thereafter. This relevant weight loss occurring 
above 570˚C is related to degradation of disordered 
amorphous carbon as reported in literature [26,27]. For 
the functionalized MWCNTs it is observed a weight loss 
starting at ca. 285˚C, which is related to the decom- 
position of the phosphate esters, while the nanotubes do 
not exhibit weight loss until 900˚C under nitrogen 
atmosphere, indicating a high purity [28]. This last result 
is due to the removal of amorphous carbon from the 
nanotube surface confirming the Raman spectroscopy 
analysis. Moreover, TGA allowed us to estimate the 
degree of functionalization of hybrids by determining the 
percentage weight fraction of each single component in 
the hybrid by using an approach reported in literature 
[29,30]. Briefly, we focused attention on the residual 
matter at 500˚C; assuming that the interactions between 
phosphate esters and MWCNTs in the hybrid do not alter 
the residual matter of pristine components, the percen- 
tage weight fraction of phosphate esters (CPE) is cal- 
culated as 

500 500
100

500 500
N N

PE
N P

MR MR
C

MR MR
 

   
 PE

E

     (1) 

where MR500N, MR500PE and MR500N-PE are the resi- 

4. Conclusion 

osphate ester hybrids were prepared. 

dual matter at 500˚C for MWCNT, phosphate esters and 
MWCNTs/phosphate esters, respectively. We determined 
that CPE is equal to 75% indicating a relevant degree of 
functionalization. 

The MWCNTs/ph
Dispersions in CHCl3 obtained after a sonication were 
stable one week for compounds with two naphtalenic 
rings (2a-e) whilst a rise in time was observed for 
phosphate esters with one naphtalenic ring (1a-e). This 
unexpected behavior could imply that the van der Waals 
interactions between the long side chains of phosphate 
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Figure 10. Curves of mass loss to temperature (TG) fo

sters and MWCNT surfaces could be more influent, in
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