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ABSTRACT

This paper presents a novel implementation of graphics

processing unit (GPU) based symbol timing recovery using

polyphase interpolators to detect symbol timing error. Sym-

bol timing recovery is a compute intensive procedure that de-

tects and corrects the timing error in a coherent receiver. We

provide optimal sample-time timing recovery using a maxi-

mum likelihood (ML) estimator to minimize the timing er-

ror. This is an iterative and adaptive system that relies on

feedback, therefore, we present an accelerated implementa-

tion design by using a GPU for timing error detection (TED),

enabling fast error detection by exploiting the 2D filter struc-

ture found in the polyphase interpolator. We present this hy-

brid/heterogeneous CPU and GPU architecture by computing

a low complexity and low noise matched filter (MF) while

simultaneously performing TED. We then compare the per-

formance of the CPU vs. GPU based timing recovery for dif-

ferent interpolation rates to minimize the error and improve

the detection by up to a factor of 35. We further improve the

process by utilizing GPU optimization and performing block

processing to improve the throughput even more, all while

maintaining the lowest possible sampling rate.

Index Terms— GPU, symbol timing recovery, synchro-

nization, coherent receiver design, DSP accelerator.

1. INTRODUCTION

When data is transmitted over a wireless communication

channel, it is corrupted due to various types of noise, such as

fading, oscillator drift, frequency and phase offset, receiver

thermal noise, etc. At the receiver, it is also immune to noise

and symbol jitter in time domain because the transmitter and

receiver clocks are not the same. Therefore, a timing recovery

subsystem must be able to sample the data at a correct instant

and detect its peak for correct symbol timing recovery (STR).

Sampling just once at the receiver is ineffective due to noise

— e.g., additive white Gaussian noise (AWGN). However,

a matched filter (MF) can limit the noise at the receiver and

provide a high signal to noise ratio (SNR) sampling point

(due to correlation gain). The goal is to obtain best SNR

while avoiding inter-symbol interference (ISI). To maximize

SNR for detection, the demodulator must form inner prod-

ucts between the incoming signal and the reference signal.

That means it must time-align the locally generated reference

signal with the received signal. Since the inner product is

formed in a convolving filter, the demodulator must deter-

mine the precise time position to sample the input and output

of the filter.

Over the decades, engineers have tried to design and im-

plement clever receivers that not only detect but correct the

incoming signal. This was first introduced in the analog do-

main, however, with the availability of digital integrated cir-

cuits, the process was converted over to the digital domain

using transformation methods, yet the overall concept and the

process remains the same. This process employs a phase-

locked loop (PLL), which has 3 major components: 1. a tim-

ing error detection (TED) circuit; 2. loop filter (LF) for phase

and frequency offset detection; and 3. a controlled oscillator,

such as a numerically controlled oscillator (NCO), to advance

or retard the sample timing so that the peak of the incoming

signal is matched with the reference signal. There are sev-

eral widely used methods in TED: the Gardner method [1],

Mueller and Muller (M&M) algorithm [2], early-late gate

algorithm (ELGA) [3, 4, 5], and maximum likelihood (ML)-

based TED [3, 6].

The goal is a TED that yields high SNR, resource efficient

while maintaining the lowest possible sampling rate (ideally,

1 sample per symbol (spS)), and possibly exploits data inde-

pendence by using parallelism to speed up the PLL. There-

fore, we focus our design using ML-based TED using MF

and derivative MF [3]. ML seeks the peak of correlation out-

put using derivative MF (dMF). ELGA is the predecessor in

that it essentially finds the derivative by approximation using

early, current, and late samples. This provides a relatively low

complexity structure for a high performance system, which is

critical in terms of designing a resource efficient transceiver.

However, it is compute-intensive: it requires 3 spS and often

it also requires high order filters. M&M requires 1 spS but

its carrier recovery must be performed before STR. Interpola-

tion techniques for STR have been well discussed in the past

(e.g., see [7]). Polyphase interpolator based ML TED was

introduced in [3, 8]. This idea was taken further by moving

MF into the interpolator, and the resulting structure onto FP-
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GAs in [9]. Then the lowest error resolution was achieved by

using an arbitrary resampler instead of a polyphase interpola-

tor in [10] for FPGAs as well. The polyphase filterbank is a

2D matrix structure and its lattice decomposition of multirate

filters has been introduced in [11]. While these implementa-

tions have made progress towards improved TED, the compu-

tational bottlenecks of the algorithm prohibit maximum SNR

for low sample rates.

Graphics processing units (GPUs) represent an attractive

class of computational resources for applications that can map

to it. We recognize the independence among the filterbanks

and multiplication between filter coefficients and input sam-

ples. We can exploit them using multiple forms of parallelism

inside the GPU to speed up the overall filtering operation,

which then speeds up the overall error detection because its

output is directly responsible for the output and timing er-

ror [3]. Finally, by driving the LF and NCO (running at 1 spS

as derived in [3]), it essentially aligns the reference symbol

(matched filtered data) to the received symbol (same princi-

ples as other digital methods and as well as analog methods),

and this method works well for this type of data-aided coher-

ence receiver (i.e., phase modulated). With decreased detec-

tion time, we can increase the throughput of the system by

performing faster locking.

To accommodate the iterative and adaptive nature of

PLLs, we present in this work a specific decomposition and

mapping of the application onto GPUs. With our careful im-

plementation and the availability of many threads and cores

in the GPU, we also perform simultaneous STR over multiple

input samples. Instead of the sample-by-sample processing

in traditional digital receivers, we enable block processing of

multiple symbols simultaneously to improve the throughput

even further, an attractive option for modern wireless com-

munication systems. The rest of the paper is organized as

follows: we discuss the details of ML-based TED; provide

an overview of NVIDIA’s CUDA programming language;

present our mapping of TED onto GPUs; and present design

and implementation details, followed by results analysis and

summary comments. Fig. 1 shows a block diagram of our

targeted communication system throughout the developments

of this paper.

2. BACKGROUND AND RELATED WORK

2.1. ML-based Timing Error Detection

The timing error inML-based method is defined as: terror (n) =
ẏ(n)y(n), where y(n) is the output of the filter and ẏ(n) is the
output of the derivative filter. This equation is for low SNR.

However, in practice, designers apply it for all SNR [6]. This

approach can be implemented using 2 polyphase filters —

a polyphase matched filter (MF) and a polyphase derivative

matched filter (dMF). Polyphase filter implementation is well

discussed in [3, 6]. This form of timing error detection has
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Fig. 1. Block diagram of ML-based symbol timing recovery.

higher SNR than Gardner and faster locking average time [9].

Gardner is an approximation of ẏ(n)y(n) using 2 spS by

scaling zero-crossing of the eye diagram, therefore, it only

uses 1 MF.

This polyphase filter based ML method offers an efficient

option and is the most applicable to our purposes in this pa-

per of efficient parallelization and low complexity implemen-

tation. The number of interpolation points corresponds to the

number of filterbanks. Therefore, with increasing numbers of

filterbanks, we can achieve higher interpolation points. Sepa-

rate interpolation filter and MF structures result in extra pro-

cessing delay. Hence, we combine the polyphase interpolator

into an MF that uses 1 filter [9, 10].

This approach to ML-based TED is compute intensive,

often requiring many multipliers for filtering, and filters that

contain hundreds or thousands of coefficients depending on

the interpolation rates and filter orders. Therefore, paralleliz-

ing and distributing the filtering tasks are attractive options

and can be realized well in GPUs given their lightweight

threads and data parallel processing structures. Our goal is

thus to map the filtering operations across the GPU in such a

way that GPU utilization is maximized, thereby offering re-

duced computation (from the polyphase structures employed)

and higher throughput.

If the current timing estimate is too early, then the slope

of the MF output is positive, so the timing phase should be

advanced to an optimum sampling point. On the other hand,

if the current timing estimate is too late, the slope of MF out-

put is negative, and the timing phase should be retarded [8].

Harris and Rice presented a modern STR by integrating the

MF and polyphase interpolator into a single structure as a

polyphase MF [3].

We employ BPSK for the simplicity and practicality of its

implementation. For BPSK implementation, we follow the

overall structure presented by Gardner [1] and Frerking [12].

The idea of interpolation of such digital modems is well cov-



ered in [13, 14]. We combine polyphase TED [6] and ML

error detection in [3], and then we exploit the resulting algo-

rithm structure using GPU technology to improve the perfor-

mance of STR further. This method can be extended to M-

PSK or M-QAM for complex signals as well, and pursuing

such extensions is a useful direction for future work.

Once a corrected sample point has been selected at the

output of the MF, we discard the remaining interpolated sam-

ples. For example, given an input data stream at 2 spS, after

1:32 interpolation, we have 64 samples to choose from. We

sample once at the peak, and then discard the remaining 63

interpolated values or interpolants. With this sampled point,

we calculate the error discussed earlier. This timing error is

then fed to an LF structure where it is used to eliminate the

phase and frequency offsets.

Because of its rapid variation, we cannot use the instanta-

neous error to correct our timing. Therefore, we must average

over some time, a fundamental method in signal detection.

However, using averaging methods such as moving average

can take too much time to lock. If the error does not change,

then the system remains locked, but unfortunately timing jit-

ters due to noise may persist, and these errors must be de-

tected and corrected (filtered) each time. An LF is useful to

provide such correction. Following the LF, we need an NCO

to correctly drive or adjust the timing sample and feed it back

to TED for future adjustment as necessary. A control circuit

is used to accomplish this task by selecting a corresponding

filterbank index. An overall block diagram is shown in Fig. 1.

2.2. CUDA

GPUs have been used in the past for computer graphics, but

with the advancement of GPU technology in recent years,

they are being used for broader classes of applications, es-

pecially those that involve processing large arrays and ma-

trices of data. In this work, we employ an NVIDIA GPU

along with the GPU-oriented parallel programming language

CUDA [15].

GPUs enable efficient heterogeneous computing. Mod-

ern GPU platforms comprise of one or more CPU cores and

one or more GPUs, which have many powerful arithmetic

engines capable of simultaneously running large numbers of

lightweight threads. The smallest unit of parallelism, called

a warp, on a CUDA-supported device has 32 threads. The

NVIDIA GTX 260, which we employ in our experiments, has

216 processor cores, which collectively allow for more than

165,000 active threads. GPUs process active threads concur-

rently and to enhance the efficiency of such concurrent exe-

cution, no swapping or sharing among concurrent threads oc-

curs. The threads are allocated separately and remain that way

until they complete execution. To optimize our mapping, we

utilize the memory hierarchy found in GPUs, especially with

use of registers, shared memory (SM), and constant mem-

ory (CM), in addition to using the available multiprocessors

(MPs).

To efficiently utilize a GPU platform, the programmer

must structure the implementation such that GPU threads are

kept as busy as possible. This means that opportunities for

independent parallel execution must be identified, and spread

across the GPU for effective resource utilization. In the plat-

form that we employ, data transfers between the CPU and

GPU occur over a PCI Express bus, and such transfers can be

costly in terms of speed and energy consumption. Therefore,

such transfers should be minimized with as much processing

as possible performed on the GPU before results are trans-

ferred back to the CPU.

3. GPU-BASED TIMING ERROR DETECTION

Our design process began with the timing recovery system

shown in Fig. 1, and we first identified the computational bot-

tleneck in this system — i.e., the part that is most arithmeti-

cally demanding. The NCO is a sequential system that simply

counts up at a certain rate and wraps around after it reaches its

peak. We embedded a control circuit in the NCO to scale the

output of the LF so that the NCO speeds up or down depend-

ing on the error value relative to the peak. The LF is also a

sequential system that multiplies the detected timing error by

LF gains to track the error over the time. Calculation of gains

for TED and LF (Ki and Kp) are well covered in [16, 17],

and BPSK timing recovery S-curve calculation is well cov-

ered in [4]. Our contribution in this work includes mapping

such calculations efficiently into GPU implementation, and

structuring parallelism within and across the different calcu-

lations to maximize performance.

The PLL operates in several modes. During its initial

phase or the acquisition phase, it acquires the signal using

a wide bandwidth, which in turn allows more noise to enter

the loop, but reduces locking time. Once it locks onto a signal

it stays in the tracking phase where the bandwidth can be nar-

rowed as much as possible and the loop stays locked as long

as the noise level remains stable.

It is important to note that in our system, we fixed our LF

bandwidth to be as narrow as possible going into the loop.

Normally, this would cause the loop to take a long time to

lock onto the signal, however, with our GPU-based TED,

we are able to lock quickly due to reduced error detection

time. Maintaining this narrowest possible bandwidth in track-

ing mode is indeed an important novel feature of our GPU-

based implementation. This feature provides rapid locking

without leaving the system susceptible to larger noise levels

across a larger bandwidth.

Switching or changing the bandwidth on the fly is a dif-

ficult task but we are able to apply a narrow bandwidth, as

described above, and to acquire and lock onto the signal all at

the same time. This not only simplifies the design but gives

us a smooth tracking curve that is fine tuned over the sym-

bols.However, the design and implementation of LF, NCO,



and PLL are beyond the scope of this paper. Therefore, the

polyphase MF and dMF, which are based on matrix opera-

tions, are the obvious choices to implement on the GPU, and

thereby reduce the overall processing time. In a heteroge-

neous processing fashion, we offload our filtering operations

to the GPU and work with sequential subsystems (the LF and

NCO) on the CPU.

The MF and dMF are the heart of our targeted design and

critical to error detection. The smaller the error or closer to

the peak, it is the better. Therefore, ideally we want to up-

sample as much as possible. For serial processors, upsam-

pling heavily (e.g., 1:50 interpolation) is not desirable due to

the required resource usage, and such interpolation can re-

quire long computation times, and even longer times required

to lock onto the peak. An alternative to high interpolation

TED is to use an arbitrary resampler, as presented in [6, 10].

However, such a method is complicated to implement. The ar-

bitrary resampler takes interpolation filtering one step further

by linearly interpolating between the available output samples

of the P -path polyphase interpolator. It yields highly accurate

TED without the need for a high P -path interpolator (in such

an interpolator the filter is large and indexing through the fil-

terbanks is slow, resulting in high overhead).

Therefore, a key trade-off is the complexity of the design

vs. the resolution of the error.Our objective is to reduce the

design complexity while achieving a high interpolation rate.

By using a polyphase interpolator to interpolate at a very high

rate to achieve arbitrary resampler like performance, and by

carefully mapping the filter operations into efficient parallel

realizations on the GPU, we achieve this objective through

our new approach.

This type of implementation is commonly used in embed-

ded devices such as FPGAs. However, in FPGAs, we com-

monly share a single multiplier to perform the filtering by

time-sharing, otherwise we end up using one multiplier per

tap, which can easily amount to hundreds of multipliers for

a high-performance filter, such as the interpolating filter we

are using. Multipliers are costly in hardware area and can in-

crease power consumption as well. However, in GPUs, we

can perform large numbers of parallel multiplications using

special arithmetic units that are available to all of the threads.

In addition, we have used floating point operations to imple-

ment our design, which has eased implementation issues. Our

use of floating point operations has also simplified our test-

ing and verification processes since conversion or scaling be-

tween data types was not needed.

To map the TED onto the targeted GPU architecture, we

use warps, shared memories (SMs), and groups (blocks) of

multiprocessors (MPs) to optimize utilization of the NVIDIA

GTX device. The filter equation has two parts, one for

multiply-and-accumulate (MAC) operations to perform the

inner product between two vectors — the input array and

filter coefficients, and the other for indexing through the fil-

terbanks. A typical polyphase interpolator implementation

can be described as shown in Algorithm 1.

Algorithm 1 Iterative MAC operation

for jj = 0 to P − 1 do
for ii = 0 toM − 1 do
prod = h[ii× P + jj]× r[ii]
accum = accum+ prod

end for

end for

Here, h is the filter array, r is an array of input samples,

P is the interpolation rate, and M is the length of a subfilter.

Thus, the original filter length is N = P × M . We sim-

ply rearrange or reshape this 1×N filter vector into a P ×M
polyphase filter matrix. Due to its 2-dimensional structure, we

use double for-loops to accomplish this filtering task, which

serially indexes through the filter taps and input samples. We

utilize multiple forms of parallelism in this structure. Specif-

ically, we parallelize: (1) across the filterbanks (outer loop,

jj index); (2) across the filter (inner loop, ii index); and (3)

at a higher level, across the filter and the filterbanks.

When we parallelize across the filterbanks, we exploit the

independence of accumulation across the filterbanks. The

modified computation structure can be described as shown in

Algorithm 2.

Algorithm 2 Parallel MAC operation

for ii = 0 toM − 1 do
prod = h[ii× P + iy]× r[ii]
accum[iy] = accum[iy] + prod

end for

Here, we replace jj with iy, the polyphase filterbank

index, and place one filterbank per block in the GPU. Thus,

each bank produces one interpolated value or an interpolant.

Similarly, when we parallelize across the filter (ii index) it-

self, we simply assign one multiply operation to one thread in

a block. So we simply replace ii with ix, the thread index

of the block. The value of M is chosen to match the warp

size or 32 threads. We eliminate for-loops in the GPU im-

plementation as long as there are no data dependencies, and

we can calculate the iterations independently.

Based on this approach, we combine multiple levels of

parallelism to parallelize across the entire polyphase filter ma-

trix. The resulting computational structure is shown in Algo-

rithm 3.

Algorithm 3 Fully parallel MAC operation

prod[ix] = h[ix× P + iy]× r[ix]
SY NC
for kk = 0 toM − 1 do

accum = accum+ prod[kk]
end for



In this version, the filter is accessed via thread index ix

and bank index, iy. We use the “sync thread” function in

CUDA to synchronize our threads, and ensure that all of the

products are available before they are summed. Since we are

summing across a relatively small number of threads (i.e. less

than 32 threads), it is not necessary to perform further reduc-

tion of the accumulator part. Therefore, we sum the products

over the threads using a simple for-loop, as shown in Algo-

rithm 3.

In order to optimize the GPU implementation for our ex-

periments, we choose the number of threads per block (tpb) to

be a multiple of the warp size to avoid wasting bandwidth, fa-

cilitate coalescing, and grouped memory access. Each thread

is assigned a lightweight operation such as multiplication for

both filters. The interpolation rate is chosen so that all MPs

are uniformly loaded — i.e., the same number of blocks is

launched on each MP, and also the amount of work of inter-

est per block is the same and provides more consistent results

from run to run, which allows a high interpolation rate and

higher utilization of blocks in the GPU. The speedup in our

implementation is achieved from invoking more GPU blocks,

since there are many GPU blocks compared to threads, as-

suming the threads are kept busy enough (at least 64 tpb).

The output of the STR comes from the MF directly.

Therefore, the higher the value of P (the number of polyphase

paths), the more accurate the output will be. Furthermore,

since the results are based on the actual value rather than the

sign, as in [1], it is critical that we align the sample to the peak

as close as possible to yield a high SNR. However, increasing

P does not always yield a better result, as there is a limit on

how far we can interpolate and potentially it can slow down

the locking time because of the large number of interpolants

that must be processed.

In the following section, we experiment with different val-

ues of M and P to find where the GPU performs best. We

strive for 50% occupancy, which amounts to 256 tpb in the

targeted GPU. Our design is structured to utilize SM as much

as possible and use constant memory (CM) for read only data,

such as filter coefficients, for faster cached access. We mini-

mize register spills to local memory by minimizing local vari-

able declarations and keeping the local array (e.g., product

vectors) in the SM as much as possible for grouped access,

and avoiding bank conflicts within SM.

4. DESIGN AND IMPLEMENTATION OF GPU

ACCELERATED SYMBOL TIMING RECOVERY

We model and simulate our entire design shown in 1 using

MATLAB, and then develop optimized implementations in C

and CUDA targeted to the CPU and GPU, respectively. For

our experiments, a BPSK signal is generated and pulse shaped

at 2 spS using a root-raised-cosine (RRC) filter (with a roll-

off factor of 0.5). To emulate a burst transmission or a data

packet, we choose our data to be 2000 symbols or 4000 sam-

ples after pulse shaping. Typically, the system requires hun-

dreds symbols to lock, so it is reasonable to validate the STR

operation with 2000 symbols. AWGN is then added to the

transmitted data to emulate the timing jitter in the receiver. It

is assumed that the data has been properly modulated then de-

modulated to the baseband and downsampled to 2 spS imme-

diately going into the timing recovery loop. We also assume

that there is no carrier phase or frequency offset. The matched

filter is also an RRC filter (with a roll-off factor of 0.5), and

chosen to be of 864 taps, which reshapes it to give a P ×M
matrix with size 27×32. Therefore, the number of filterbanks

or interpolation rate is 27 and each filterbank has 32 taps. The

interpolation rate is varied in order to profile the performance

of our system, and help tune the system for maximum perfor-

mance. The CPU used in our experiments is a dual core Intel

Xeon 3.0 GHz CPU, and the GPU is an NVIDIA GTX 260.

In our design of the STR, we have improved the NCO

such that the zone test shown in [3] is not required. The zone

test is used in [3] because given 2 spS, even and odd samples

are continuously arriving, and the system needs to determine

where the peak is. Therefore, tests are performed to determine

the decision sample for each input sample. In our modified

approach, we streamlined the NCO to simply count up to the

total number of samples per symbol. For example, given P =
27 and input data at 2 spS, we simply count up to 54 samples

per symbol every time. This method eliminates the need for

the zone test and significantly reduces the design complexity.

From these 54 samples, only one sample is selected to be

used as an error and output of the system. Therefore, running

at the lowest possible sample rate is important. The scale fac-

tor is given by

Kv =
2π

S × P
,

where S is the pulse shape rate, and (as defined earlier), P is

the interpolation rate.

When the LF error is scaled with this value, the control

loop will update the corresponding filterbank index, and the

updated index will be used to select the peak on the next sym-

bol. A sample plot of the timing error and the corresponding

polyphase bank index is shown in Figure 2.

4.1. Sequential Symbol Timing Recovery

In Section 3, we discuss how we exploit multiple forms of

parallelism found in our TED. We first parallelize across fil-

terbanks, followed by parallelization within individual filters.

For the initial implementation, we use P = 27 and M = 32.
Each filterbank is assigned to a block in the GPU, where each

block has 32 threads assigned to a 32-tap filtering operation.

The interpolated values of the input sample are obtained as

the matrix-vector product

p = H × r, (1)
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Fig. 2. An example plot of timing error and corresponding

polyphase filterbank index for SNR of 10 dB.

whereH is the polyphase filter matrix (dimensions ofP×M ),

r is the input array (dimensions ofM ×1), and p (dimensions

of P × 1) gives the interpolated values of the input sample.

This process is then repeated for both the MF and dMF to give

us filtered results in real time.

Polyphase filtering already gives us reduced multiplica-

tions due to its use of filterbanks — given our filter size of

27 × 32 = 864 filter taps, we only have to perform 32 mul-

tiplications, giving us a workload savings of 96.3%. In addi-

tion, we parallelize across the polyphase filtering operations,

providing significant savings in terms of computation time.

We vary the interpolation rate P to be multiples of MPs

(i.e., multiples of the number of multiprocessors per core). In

particular, we employ P = 27, 54, 81. This type of high in-

terpolation is not desirable in typical FPGA or CPU devices,

due to the large number of multipliers, and the large amount

of time and memory required. However, it maps efficiently

into GPU implementation, and therefore demonstrates an im-

portant kind of processing in which GPUs are especially well

suited to communication system development.

We transfer data back to the CPU from the GPU every

time the TED block is called. Due to the sequential and recur-

sive nature of the PLL and NCO, they are not well suited for

GPU acceleration, and thus we incur the data transfer over-

head required to perform the PLL and NCO computations on

the CPU.

4.2. Simultaneous Multi-Symbol Timing Recovery

So far in the paper, we have presented a one-to-one mapping

of a sequential filter indexing into matrix operations by un-

rolling the loops across the polyphase filter matrix. However,

this is still a sequential and iterative system that needs to be

updated on a sample-by-sample basis. To utilize more banks

and threads per kernel launch on the targeted GPU, we rec-

ognize that the input samples do not have to be processed

sequentially to produce interpolated outputs. Instead, input

samples can be interpolated independently on the GPU us-

ing the same kernel, while the PLL is updated sequentially as

usual on the CPU. Therefore, we apply block processing on

the input samples, which significantly improves throughput

and minimizes data transfer overhead.

With this new grouping of input data samples, based on

a block processing configuration, we introduce the notion of

sub-blocks and sub-thread indexing within a single block.

Each sub-block is responsible for a single set of M = 32
input words. Therefore, a total of (M +K − 1) samples are

stored in SM. Here, K is the number of input samples we

wish to process and (M − 1) gives the number of previous

words to process. In our case,K = 8, so there are 8 indepen-
dent processing subsystems spanning 32 input samples each,

which results in 256 active threads per block, an optimum

occupancy level for the targeted GPU.

Since we are processing 8 input samples or 4 symbols per

kernel launch, our throughput also increases by a factor of 4.

Furthermore, we also achieve a reduction in memory trans-

fer bandwidth by a factor of 8. This is achieved because we

do not have to transfer the interpolated data back to the CPU

for every sample, and our rate for initiating such transfers is

reduced by a factor of 8. In addition, the filter coefficients

are stored in constant memory (CM), which is optimized for

broadcast and for constants, and product vectors and accu-

mulation registers are stored in shared memory (SM) for fast

read-and-write operations. This also ensures coalesced or

grouped data access at the block-level. Our approach to sub-

grouping (sub-block organization) is shown in Fig. 3.
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Fig. 3. Organization of 256 threads to handle eight 32-input

words at a time for filtering inside the GPU. (M + K − 1
samples are loaded onto the shared memory, where M = 32
(a warp) and K = 8 (the number of input samples for block

processing).



In this adaptive communication system design, it is not

obvious how to process multiple input samples simultane-

ously and still perform iterative updates. However, with our

TED operating in the GPU, we can interpolate many input

samples all at once, while the CPU updates the sequential

loop as usual using the LF and NCO. As the NCO traverses

from symbol to symbol, new errors are detected and updated

accordingly in the CPU. Regardless of whether input samples

are processed one at a time or in groups, the architecture de-

veloped in this section provides a significant advantage in that

it allows for highly optimized block processing of the data.

This results in enhanced real time communication system per-

formance, as we demonstrate experimentally in Section 5.

5. RESULTS AND ANALYSIS

In this paper, we have presented 5 different TED implemen-

tations using CPU and GPU devices. In the CPU, we used

double for-loops to sequentially index through the filter ma-

trices, whereas in the GPU, we exploited multiple levels of

parallelism. These levels of parallelism and their associated

implementations are denoted as: (P1) across the filterbank (y-
direction); (P2) across the filter (x-direction); (P3) across the
entire filterbank matrix (both x and y-directions); and (P4)

simultaneous filtering using block processing of the input.

Figure 4 compares the performance of these different TED

designs for different values of the interpolation rate P . Dif-

ferent trade-offs between the interpolation rate and execution

time are shown for the CPU-only implementation (“CPU”),

and implementations P1-P4, as defined above. We used sin-

gle precision floating point for all of our data, which led to

more efficient memory utilization (compared to double pre-

cision), and as described earlier, simpler validation processes

(compared to fixed point data).
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Fig. 4. Comparison of different TED designs.

The speedup times (GPU vs. CPU) are summarized in

P = 27 P = 54 P = 81

Achieved occupancy (%) 25% 50% 75%

GPU kernel time (us) 21 36 53

GPU memory transfer (us) 3.7 3.9 4.3

Global memory

overall throughput (GB/s) 2.86 3.35 3.42

CPU TED time (ms) 1160 1400 1690

GPU TED time (ms) 40 40 50

TED speedup 29x 35x 33.8x

Table 1. Achieved speedup for GPU-based implementation

of TED.

P = 27 P = 54 P = 81

CPU-based (sec) 1.63 2.22 2.85

GPU-based (sec) 0.52 0.85 1.19

Overall speedup 3.13x 2.61x 2.39x

Table 2. Comparison of the overall speedup for the STR loop

between CPU- and GPU-based implementations.

Table 1 and 2. In this experiment, we used a single GPU

version of TED, which was executed in the block process-

ing mode, and with the following additional implementation

characteristics: 256 tpb, register ratio of 50% (8192/16384 or
7 registers per thread), SM ratio of 62.5% (10240/16384 or

2300 bytes per block), active blocks per SM of 4:8, and active

threads per SM of 1024:1024. Furthermore, none of the inter-

polation rates (P values) that we experimented with exhibited

occupancy as a limiting factor. Only the grid sizes (i.e., the

numbers of blocks) or P values were changed in these exper-

iments on overall achieved acceleration.

As expected, higher occupancy does not necessarily mean

higher performance, and our experiments helped to quantify

at what point this kind of saturation occurs for our GPU-

based TED implementation. Our largest performance gain

was achieved with P = 54, and an occupancy level of 50%.

Finally, we compared the overall speedup of the STR loop

between CPU-based and GPU-based implementations. In this

experiment, we used the block processing version of the GPU

TED to maximize the speedup. The results are summarized

in Table 2.

As P increases, the GPU spends more time in the kernel

due to the increased matrix size, but the memory transfer time

remains low even though more interpolants are transferred.

However, this increased number of interpolants causes a re-

duction in performance, since the LF and NCO must make a

sequential update, which is left to the CPU to process. This is

unavoidable due to the nature of the PLL, which must adjust

sample timing iteratively. This is a trade-off between high in-

terpolation and LF/NCO update using this type of GPU-based

STR. The implementation spends significant amounts of time

updating sequential loops in the CPU, not performing GPU

computation or memory transfers. Optimizing this trade-off



remains as a future research area for GPU-based STR.

6. CONCLUSION

In this paper, we use a coherent synchronization technique

to explore ways to improve the performance of symbol tim-

ing recovery (STR) for a digital receiver. Our targeted STR

system is a sequential, adaptive feedback system that must ac-

curately time incoming digital communication symbols under

stringent real time constraints. Our goal is to approach the op-

timal sampling peak as closely as possible while minimizing

the error without using filtering that is excessively complex.

We use maximum likelihood (ML) based timing error detec-

tion (TED) to interpolate the data at a high resolution, and

minimize the timing error or detect the symbol peak.

Although we use already streamlined polyphase filter-

banks to perform interpolation, the filterbanks create large

computational loads due to the high orders of the filters in-

volved. Therefore, we use a graphics processing unit (GPU)

to accelerate the operation of TED. Our GPU-based TED

enables instant error detection, narrow loop filter (LF) band-

width (i.e., low input noise) with faster lock, low complexity,

and high signal to noise ratio (SNR) with increased through-

put. Our experimental results demonstrate that our design

methods for real-time STR map efficiently into GPU-based

implementation, and we provide analysis to quantify some

of the key trade-offs involved in this kind of implementation.

Building on our proposed STR implementation techniques

to develop and optimize complete GPU-based transceiver

systems is a useful area for future work.
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