2,607 research outputs found

    Solitons in tunnel-coupled repulsive and attractive condensates

    Full text link
    We study solitons in the condensate trapped in a double-well potential with far-separated wells, when the s-wave scattering length has different signs in the two parts of the condensate. By employing the coupled-mode approximation it is shown that there are unusual stable bright solitons in the condensate, with the larger share of atoms being gathered in the repulsive part. Such unusual solitons derive their stability from the quantum tunneling and correspond to the strong coupling between the parts of the condensate. The ground state of the system, however, corresponds to weak coupling between the condensate parts, with the larger share of atoms being gathered in the attractive part of the condensate.Comment: LaTex, 23 pages, 6 figures; revised version; to appear in Physical Review

    Comment on ``Validity of Feynman's prescription of disregarding the Pauli principle in intermediate states''

    Get PDF
    In a recent paper Coutinho, Nogami and Tomio [Phys. Rev. A 59, 2624 (1999); quant-ph/9812073] presented an example in which, they claim, Feynman's prescription of disregarding the Pauli principle in intermediate states of perturbation theory fails. We show that, contrary to their claim, Feynman's prescription is consistent with the exact solution of their example.Comment: 1 pag

    Lythraceae.

    Get PDF
    MARHOLD, K.; FELINER, G. N. (Ed.). IOPB Column

    A new broken U(1)-symmetry in extreme type-II superconductors

    Full text link
    A phase transition within the molten phase of the Abrikosov vortex system without disorder in extreme type-II superconductors is found via large-scale Monte-Carlo simulations. It involves breaking a U(1)-symmetry, and has a zero-field counterpart, unlike vortex lattice melting. Its hallmark is the loss of number-conservation of connected vortex paths threading the entire system {\it in any direction}, driving the vortex line tension to zero. This tension plays the role of a generalized ``stiffness'' of the vortex liquid, and serves as a probe of the loss of order at the transition, where a weak specific heat anomaly is found.Comment: 5 pages, 3 figure

    Plasmon polaritons in photonic superlattices containing a left-handed material

    Get PDF
    We analyze one-dimensional photonic superlattices which alternate layers of air and a left-handed material. We assume Drude-type dispersive responses for the dielectric permittivity and magnetic permeability of the left-handed material. Maxwell's equations and the transfer-matrix technique are used to derive the dispersion relation for the propagation of obliquely incident optical fields. The photonic dispersion indicates that the growth-direction component of the electric (or magnetic) field leads to the propagation of electric (or magnetic) plasmon polaritons, for either TE or TM configurations. Furthermore, we show that if the plasma frequency is chosen within the photonic =0=0 zeroth-order bandgap, the coupling of light with plasmons weakens considerably. As light propagation is forbidden in that particular frequency region, the plasmon-polariton mode reduces to a pure plasmon mode.Comment: 4 pages, 4 figure

    COMPARATIVE ANALYSIS OF THE EFFICIENCY OF THERMAL SYSTEMS BUILT WITH REFLECTIVE INSULATORS WITH AND WITHOUT VACUUM

    Get PDF
    The use of reflective surfaces functioning as thermal insulators has grown significantly over the years. Reflective thermal insulators are materials that have several characteristics such as low emissivity, low absorptivity and high reflectivity in the infrared spectrum. The use of these materials has grown very much lately, since they contain several important radioactive properties that minimize the heat loss of thermal systems and cooling systems that are used to block the heat on the roof of buildings. A system made of three surfaces of 430 stainless steel mirror was built to analyze the influence of reflective surfaces as a way to reduce the heat loss and thereby conserve the energy of a thermal system. The system was analyzed both with and without the presence of vacuum, and then compared with a system that contained glass wool between the stainless steel mirror walls, since this insulator is considered resistive and also broadly used around the world in thermal systems. The reflectivity and emissivity of the surfaces used were also measured in this experiment. A type K thermocouple was fixed on the wall of the system to obtain the temperature of the stainless steel mirror surfaces and to analyze the thermal behavior of each configuration used. The results showed an efficiency of 13% when the reflective surfaces were used to minimize the heat loss of the thermal system. However, the system with vacuum had the best outcome, a 60% efficiency. Both of these were compared to the system made of glass wool as a thermal insulator
    corecore