113 research outputs found

    Segond fractures are not a risk factor for anterior cruciate ligament reconstruction failure: Letter to the Editor

    Get PDF
    Germanium nanowires (NWs) have attractive properties for a variety of applications, including micro- and optoelectronics, memory devices, solar energy conversion, and energy storage, among others. For applications that involve exposure to air, the poor chemical stability and electronic surface passivation of native oxides have remained a long-standing concern. Termination by sulfur-rich surface layers has emerged as a promising strategy for passivation of planar Ge surfaces. Here we discuss experiments on solid-state sulfurization of Ge nanowires in sulfur vapor at near-ambient pressures and at different temperatures. Combined transmission electron microscopy imaging and chemical mapping establishes that Ge NWs remain intact during vapor-phase reaction with S at elevated temperatures, and show the formation of sulfur-rich shells with T-dependent morphology and thickness on the Ge NW surface. Photoluminescence of ensembles of such core-shell nanowires is dominated by strong emission at approximate to 1.85 eV, consistent with luminescence of GeS. Cathodoluminescence spectroscopy on individual NWs establishes that this luminescence originates in thin GeS shells formed by sulfurization of the NWs. Our work establishes direct sulfurization as a viable approach for forming stable, wide-bandgap surface terminations on Ge NWs

    Isolated meniscotibial ligament rupture. The medial meniscus “belt lesion”

    Get PDF
    Ramp lesions play a major role in both anteroposterior and rotational instability following anterior cruciate ligament rupture. The meniscotibial ligament (MTL) is the most important structure to repair and is the primary stabilizer of the posterior horn of the medial meniscus. The posteroinferior insertion of the MTL on the posterior horn of the medial has been described, forming a posterior “belt.” Isolated MTL lesion diagnosis can be challenging, as the absence of a meniscocapsular ligament lesion prevents its correct visualization through transnotch vision. This article details a tech- nique to diagnose and repair the “belt lesion” of the medial meniscus

    Is treatment of Segond fracture necessary with combined anterior cruciate ligament reconstruction? Letter to the Editor

    Get PDF
    Germanium nanowires (NWs) have attractive properties for a variety of applications, including micro- and optoelectronics, memory devices, solar energy conversion, and energy storage, among others. For applications that involve exposure to air, the poor chemical stability and electronic surface passivation of native oxides have remained a long-standing concern. Termination by sulfur-rich surface layers has emerged as a promising strategy for passivation of planar Ge surfaces. Here we discuss experiments on solid-state sulfurization of Ge nanowires in sulfur vapor at near-ambient pressures and at different temperatures. Combined transmission electron microscopy imaging and chemical mapping establishes that Ge NWs remain intact during vapor-phase reaction with S at elevated temperatures, and show the formation of sulfur-rich shells with T-dependent morphology and thickness on the Ge NW surface. Photoluminescence of ensembles of such core-shell nanowires is dominated by strong emission at approximate to 1.85 eV, consistent with luminescence of GeS. Cathodoluminescence spectroscopy on individual NWs establishes that this luminescence originates in thin GeS shells formed by sulfurization of the NWs. Our work establishes direct sulfurization as a viable approach for forming stable, wide-bandgap surface terminations on Ge NWs

    Experimental Constraints on the Neutrino Oscillations and a Simple Model of Three Flavour Mixing

    Full text link
    A simple model of the neutrino mixing is considered, which contains only one right-handed neutrino field, coupled via the mass term to the three usual left-handed fields. This is a simplest model that allows for three-flavour neutrino oscillations. The existing experimental limits on the neutrino oscillations are used to obtain constraints on the two free mixing parameters of the model. A specific sum rule relating the oscillation probabilities of different flavours is derived.Comment: 10 pages, 3 figures in post script, Latex, IFT 2/9

    Parity nonconservation in deuteron photoreactions

    Full text link
    We calculate the asymmetries in parity nonconserving deuteron photodisintegration due to circularly polarized photons gamma+d to n+p with the photon laboratory energy ranging from the threshold up to 10 MeV and the radiative capture of thermal polarized neutrons by protons n+p to gamma+d. We use the leading order electromagnetic Hamiltonian neglecting the smaller nuclear exchange currents. Comparative calculations are done by using the Reid93 and Argonne v18 potentials for the strong interaction and the DDH and FCDH "best" values for the weak couplings in a weak one-meson exchange potential. A weak NDelta transition potential is used to incorporate also the Delta(1232)-isobar excitation in the coupled-channels formalism.Comment: 14 pages, 13 figures (18 eps files), LaTeX2

    Search for neutrino oscillations at a fission reactor

    Get PDF
    The energy spectrum of neutrinos from a fission reactor was studied with the aim of gaining information on neutrino oscillations. The well-shielded detector was set up at a fixed position of 8.76 m from the pointlike core of the Laue-Langevin reactor in an antineutrino flux of 9.8×10^11 cm^-2 s^-1. The target protons in the reaction Μ̅ep→e+n were provided by liquid-scintillator counters (total volume of 377 l) which also served as positron detectors. The product neutrons moderated in the scintillator were detected by 3He wire chambers. A coincidence signature was required between the prompt positron and the delayed neutron events. The positron energy resolution was 18% full width at half maximum at 0.91 MeV. The signal-to-background ratio was better than 1: 1 between 2 and 6 MeV positron energy. At a counting rate of 1.58 counts per hour, 4890±180 neutrino-induced events were detected. The shape of the measured positron spectrum was analyzed in terms of the parameters Δ2 and sin22Ξ for two-neutrino oscillations. The experimental data are consistent with no oscillations. An upper limit of 0.15 eV2 (90% C.L.) for the mass-squared differences Δ2 of the neutrinos was obtained, assuming maximum mixing of the two-neutrino states. The ratio of the measured to the expected integral yield of positrons assuming no osciliations was determined to be ∫Yexp/∫Yth=0.955±0.035(statistical)±0.110(systematic)

    Phenotypic and Transcriptomic Response of Auxotrophic Mycobacterium avium Subsp. paratuberculosis leuD Mutant under Environmental Stress

    Get PDF
    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of severe gastroenteritis in cattle. To gain a better understanding of MAP virulence, we investigated the role of leuD gene in MAP metabolism and stress response. For this, we have constructed an auxotrophic strain of MAP by deleting the leuD gene using allelic exchange. The wildtype and mutant strains were then compared for metabolic phenotypic changes using Biolog phenotype microarrays. The responses of both strains to physiologically relevant stress conditions were assessed using DNA microarrays. Transcriptomic data was then analyzed in the context of cellular metabolic pathways and gene networks. Our results showed that deletion of leuD gene has a global effect on both MAP phenotypic and transcriptome response. At the metabolic level, the mutant strain lost the ability to utilize most of the carbon, nitrogen, sulphur, phosphorus and nutrient supplements as energy source. At the transcriptome level, more than 100 genes were differentially expressed in each of the stress condition tested. Systems level network analysis revealed that the differentially expressed genes were distributed throughout the gene network, thus explaining the global impact of leuD deletion in metabolic phenotype. Further, we find that leuD deletion impacted metabolic pathways associated with fatty acids. We verified this by experimentally estimating the total fatty acid content of both mutant and wildtype. The mutant strain had 30% less fatty acid content when compared to wildtype, thus supporting the results from transcriptional and computational analyses. Our results therefore reveal the intricate connection between the metabolism and virulence in MAP

    The anterolateral complex of the knee: results from the International ALC Consensus Group Meeting

    Get PDF
    The structure and function of the anterolateral complex (ALC) of the knee has created much controversy since the 're-discovery' of the anterolateral ligament (ALL) and its proposed role in aiding control of anterolateral rotatory laxity in the anterior cruciate ligament (ACL) injured knee. A group of surgeons and researchers prominent in the field gathered to produce consensus as to the anatomy and biomechanical properties of the ALC. The evidence for and against utilisation of ALC reconstruction was also discussed, generating a number of consensus statements by following a modified Delphi process. Key points include that the ALC consists of the superficial and deep aspects of the iliotibial tract with its Kaplan fibre attachments on the distal femur, along with the ALL, a capsular structure within the anterolateral capsule. A number of structures attach to the area of the Segond fracture including the capsule-osseous layer of the iliotibial band, the ALL and the anterior arm of the short head of biceps, and hence it is not clear which is responsible for this lesion. The ALC functions to provide anterolateral rotatory stability as a secondary stabiliser to the ACL. Whilst biomechanical studies have shown that these structures play an important role in controlling stability at the time of ACL reconstruction, the optimal surgical procedure has not yet been defined clinically. Concern remains that these procedures may cause constraint of motion, yet no clinical studies have demonstrated an increased risk of osteoarthritis development. Furthermore, clinical evidence is currently lacking to support clear indications for lateral extra-articular procedures as an augmentation to ACL reconstruction. The resulting statements and scientific rationale aim to inform readers on the most current thinking and identify areas of needed basic science and clinical research to help improve patient outcomes following ACL injury and subsequent reconstruction. Level of evidence V
    • 

    corecore