63 research outputs found

    Time-Dependent Symmetries of Variable-Coefficient Evolution Equations and Graded Lie Algebras

    Full text link
    Polynomial-in-time dependent symmetries are analysed for polynomial-in-time dependent evolution equations. Graded Lie algebras, especially Virasoro algebras, are used to construct nonlinear variable-coefficient evolution equations, both in 1+1 dimensions and in 2+1 dimensions, which possess higher-degree polynomial-in-time dependent symmetries. The theory also provides a kind of new realisation of graded Lie algebras. Some illustrative examples are given.Comment: 11 pages, latex, to appear in J. Phys. A: Math. Ge

    Degenerate multi-solitons in the sine-Gordon equation

    Get PDF
    We construct various types of degenerate multi-soliton and multi-breather solutions for the sine-Gordon equation based on Bäcklund transformations, Darboux–Crum transformations and Hirota's direct method. We compare the different solution procedures and study the properties of the solutions. Many of them exhibit a compound like behaviour on a small timescale, but their individual one-soliton constituents separate for large time. Exceptions are degenerate cnoidal kink solutions that we construct via inverse scattering from shifted Lamé potentials. These type of solutions have constant speed and do not display any time-delay. We analyse the asymptotic behaviour of the solutions and compute explicit analytic expressions for time-dependent displacements between the individual one-soliton constituents for any number of degeneracies. When expressed in terms of the soliton speed and spectral parameter the expression found is of the same generic form as the one formerly found for the Korteweg–de-Vries equation

    The Geometrodynamics of Sine-Gordon Solitons

    Get PDF
    The relationship between N-soliton solutions to the Euclidean sine-Gordon equation and Lorentzian black holes in Jackiw-Teitelboim dilaton gravity is investigated, with emphasis on the important role played by the dilaton in determining the black hole geometry. We show how an N-soliton solution can be used to construct ``sine-Gordon'' coordinates for a black hole of mass M, and construct the transformation to more standard ``Schwarzchild-like'' coordinates. For N=1 and 2, we find explicit closed form solutions to the dilaton equations of motion in soliton coordinates, and find the relationship between the soliton parameters and the black hole mass. Remarkably, the black hole mass is non-negative for arbitrary soliton parameters. In the one-soliton case the coordinates are shown to cover smoothly a region containing the whole interior of the black hole as well as a finite neighbourhood outside the horizon. A Hamiltonian analysis is performed for slicings that approach the soliton coordinates on the interior, and it is shown that there is no boundary contribution from the interior. Finally we speculate on the sine-Gordon solitonic origin of black hole statistical mechanics.Comment: Latex, uses epsf, 30 pages, 6 figures include

    The Coupled Modified Korteweg-de Vries Equations

    Full text link
    Generalization of the modified KdV equation to a multi-component system, that is expressed by (∂ui)/(∂t)+6(∑j,k=0M−1Cjkujuk)(∂ui)/(∂x)+(∂3ui)/(∂x3)=0,i=0,1,...,M−1(\partial u_i)/(\partial t) + 6 (\sum_{j,k=0}^{M-1} C_{jk} u_j u_k) (\partial u_i)/(\partial x) + (\partial^3 u_{i})/(\partial x^3) = 0, i=0, 1, ..., M-1 , is studied. We apply a new extended version of the inverse scattering method to this system. It is shown that this system has an infinite number of conservation laws and multi-soliton solutions. Further, the initial value problem of the model is solved.Comment: 26 pages, LaTex209 file, uses jpsj.st

    Symmetries of a class of nonlinear fourth order partial differential equations

    Full text link
    In this paper we study symmetry reductions of a class of nonlinear fourth order partial differential equations \be u_{tt} = \left(\kappa u + \gamma u^2\right)_{xx} + u u_{xxxx} +\mu u_{xxtt}+\alpha u_x u_{xxx} + \beta u_{xx}^2, \ee where α\alpha, β\beta, γ\gamma, κ\kappa and μ\mu are constants. This equation may be thought of as a fourth order analogue of a generalization of the Camassa-Holm equation, about which there has been considerable recent interest. Further equation (1) is a ``Boussinesq-type'' equation which arises as a model of vibrations of an anharmonic mass-spring chain and admits both ``compacton'' and conventional solitons. A catalogue of symmetry reductions for equation (1) is obtained using the classical Lie method and the nonclassical method due to Bluman and Cole. In particular we obtain several reductions using the nonclassical method which are no} obtainable through the classical method

    On the Caudrey-Beals-Coifman System and the Gauge Group Action

    Get PDF
    The generalized Zakharov-Shabat systems with complex-valued Cartan elements and the systems studied by Caudrey, Beals and Coifman (CBC systems) and their gauge equivalent are studies. This includes: the properties of fundamental analytical solutions (FAS) for the gauge-equivalent to CBC systems and the minimal set of scattering data; the description of the class of nonlinear evolutionary equations solvable by the inverse scattering method and the recursion operator, related to such systems; the hierarchies of Hamiltonian structures.Comment: 12 pages, no figures, contribution to the NEEDS 2007 proceedings (Submitted to J. Nonlin. Math. Phys.

    Completely integrable models of non-linear optics

    Full text link
    The models of the non-linear optics in which solitons were appeared are considered. These models are of paramount importance in studies of non-linear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency, and parametric interaction of three waves. At the present time there are a number of the theories based on completely integrable systems of equations, which are both generations of the original known models and new ones. The modified Korteweg-de Vries equation, the non- linear Schrodinger equation, the derivative non-linear Schrodinger equation, Sine-Gordon equation, the reduced Maxwell-Bloch equation, Hirota equation, the principal chiral field equations, and the equations of massive Thirring model are gradually putting together a list of soliton equations, which are usually to be found in non-linear optics theory.Comment: Latex, 17 pages, no figures, submitted to Pramana

    Point vortices and polynomials of the Sawada-Kotera and Kaup-Kupershmidt equations

    Full text link
    Rational solutions and special polynomials associated with the generalized K_2 hierarchy are studied. This hierarchy is related to the Sawada-Kotera and Kaup-Kupershmidt equations and some other integrable partial differential equations including the Fordy-Gibbons equation. Differential-difference relations and differential equations satisfied by the polynomials are derived. The relationship between these special polynomials and stationary configurations of point vortices with circulations Gamma and -2Gamma is established. Properties of the polynomials are studied. Differential-difference relations enabling one to construct these polynomials explicitly are derived. Algebraic relations satisfied by the roots of the polynomials are found.Comment: 23 pages, 8 figure

    The sine-Gordon equation as a model classical field theory

    No full text
    • …
    corecore