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Abstract

The generalized Zakharov–Shabat systems with complex-valued Cartan elements and
the systems studied by Caudrey, Beals and Coifman (CBC systems) and their gauge
equivalent are studies. This includes: the properties of fundamental analytical solu-
tions (FAS) for the gauge-equivalent to CBC systems and the minimal set of scattering
data; the description of the class of nonlinear evolutionary equations solvable by the
inverse scattering method and the recursion operator, related to such systems; the
hierarchies of Hamiltonian structures.

1 Introduction

The idea that the inverse scattering method (ISM) is a generalized Fourier transform has
appeared as early as 1974 in [1]. In the class of nonlinear evolution equations (NLEE)
related to the Zakharov–Shabat (ZS) system [30, 28] Lax operator belonging to sl(2 )
algebra was studied. This class of NLEE contains such physically important equations
as the nonlinear Schrödinger equation (NLS), the sin-Gordon and modified Korteveg–de-
Vriez (mKdV) equations.

The multi-component ZS system leads to such important systems like the multi-com-
ponent NLS, the N -wave type equations, etc.

Here we consider the n× n system [5, 7, 11]:

LΨ(x, t, λ) =

(
i

d

dx
+ q(x, t) − λJ

)
Ψ(x, t, λ), (1.1)

where q(x, t) and J take values in the semi-simple Lie algebra g [25, 14, 29, 12]:

q(x, t) =
∑

α∈∆+

(qα(x, t)Eα + q−α(x, t)E−α) ∈ gJ J =
r∑

j=1

ajHj ∈ h.

Copyright c© 2007 by G G Grahovski and M Condon

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74370779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0710.3302v1


2 G G Grahovski and M Condon

For the case of complex J we will refer this system as Caudrey-Beals-Coifman (CBC)
system. Here J is a regular element in the Cartan subalgebra h of g, gJ is the image of
adJ , {Eα,Hi} form the Cartan–Weyl Basis in g, ∆+ is the set of positive roots of the
algerbra, r = rank g = dimh. For more details see section 2 below. The regularity of the
Cartan elements means that gJ is spanned by all root vectors Eα of g, i.e. α(J) 6= 0 for
any root α of g.

The given NLEE as well as the other members of its hierarchy posses Lax representation
of the form (according to (1.1)): [L(λ),MP (λ)] = 0, where

MP Ψ(x, t, λ) =

(
i
d

dt
+

P−1∑

k=−S

Vk(x, t) − λPfP I

)
Ψ(x, t, λ) = 0, I ∈ h, (1.2)

which must hold identically with respect to λ. A standard procedure generalizing the
AKNS one [1] allows us to evaluate Vk(x, t) in terms of q(x, t) and its x-derivatives. Here
and below, we consider only the class of potentials q(x, t) vanishing fast enough for |x| →
∞. Then one may also check that the asymptotic value of the potential in MP (λ) namely
f (P )(λ) = fPλ

P I may be understood as the dispersion law of the corresponding NLEE.

Another important trend in the development of IST was the introduction of the reduc-
tion group by A. V. Mikhailov [24], and further developed in [11, 12, 29, 25, 23]. This
allows one to prove that some of the well known models in the field theory [24] and also a
number of new interesting NLEE [24, 11, 25] are integrable by the ISM and posses special
symmetry properties. As a result its potential q(x, t) has a very special form and J can
no-longer be chosen real.

This problem of constructing the spectral theory for (1.1) in the most general case when
J has an arbitrary complex eigenvalues was initialized by Beals, Coifman and Caudrey
[2, 3, 4, 7] and continued by Zhou [31] in the case when the algebra g is sl(n), q(x, t)
vanishing fast enough for |x| → ∞ and no a priori symmetry conditions are imposed
on q(x, t). This has been done later for any semi-simple Lie algebras by Gerdjikov and
Yanovski [18].

The zero-curvature condition [L(λ),MP (λ)] = 0, is invariant under the action of the
group of gauge transformations [32]. Therefore the gauge equivalent systems are again
completely integrable, posses hierarchy of Hamiltonian structures, etc, [9, 28, 18, 32].

The structure of this paper is as follows: In section 2 we summarize some basic facts
about the reduction group and Lie algebraic details. The construction of the fundamental
analytic solutions (FAS) is sketched in section 3 which is done separately for the case of real
Cartan elements (section 3.1) and for complex ones (section 3.2). The gauge equivalent
NLEE’s to the CBC systems are described in section 4.

2 Preliminaries

2.1 Simple Lie Algebras

Here we fix up the notations and the normalization conditions for the Cartan-Weyl gen-
erators of g [21]. We introduce hk ∈ h, k = 1, . . . , r and Eα, α ∈ ∆ where {hk} are the
Cartan elements dual to the orthonormal basis {ek} in the root space E

r. Along with hk,
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we introduce also

Hα =
2

(α,α)

r∑

k=1

(α, ek)hk, α ∈ ∆, (2.1)

where (α, ek) is the scalar product in the root space E
r between the root α and ek. The

commutation relations are given by:

[hk, Eα] = (α, ek)Eα, [Eα, E−α] = Hα, [Eα, Eβ] =

{
Nα,βEα+β for α+ β ∈ ∆
0 for α+ β 6∈ ∆ ∪ {0}.

We will denote by ~a =
∑r

k=1 akek the r-dimensional vector dual to J ∈ h; obviously
J =

∑r
k=1 akhk. If J is a regular real element in h then without restrictions we may

use it to introduce an ordering in ∆. Namely we will say that the root α ∈ ∆+ is
positive (negative) if (α,~a) > 0 ((α,~a) < 0 respectively). The normalization of the basis
is determined by:

E−α = ET
α , 〈E−α, Eα〉 =

2

(α,α)
, N−α,−β = −Nα,β, Nα,β = ±(p+ 1), (2.2)

where the integer p ≥ 0 is such that α+ sβ ∈ ∆ for all s = 1, . . . , p α+ (p+ 1)β 6∈ ∆ and
〈·, ·〉 is the Killing form of g. The root system ∆ of g is invariant with respect to the Weyl

reflections A∗
α; on the vectors ~y ∈ Er they act as A∗

α~y = ~y − 2(α,~y)
(α,α) α, α ∈ ∆. All Weyl

reflections A∗
α form a finite group Wg known as the Weyl group. One may introduce in a

natural way an action of the Weyl group on the Cartan-Weyl basis, namely:

A∗
α(Hβ) ≡ AαHβA

−1
α = HA∗

αβ , A∗
α(Eβ) ≡ AαEβA

−1
α = nα,βEA∗

αβ, nα,β = ±1.

It is also well known that the matrices Aα are given (up to a factor from the Cartan
subgroup) by Aα = eEαe−E−αeEαHA, where HA is a conveniently chosen element from the
Cartan subgroup such that H2

A = 11.

2.2 The Reduction Group

The main idea underlying Mikhailov’s reduction group [24] is to impose algebraic restric-
tions on the Lax operators L and M which will be automatically compatible with the
corresponding equations of motion. Due to the purely Lie-algebraic nature of the Lax
representation this is most naturally done by imbedding the reduction group as a sub-
group of Aut g – the group of automorphisms of g. Obviously, to each reduction imposed
on L and M there will correspond a reduction of the space of fundamental solutions
SΨ ≡ {Ψ(x, t, λ)} of (1.1).

Some of the simplest Z2-reductions of Zakharov–Shabat systems have been known for
a long time (see [24]) and are related to outer automorphisms of g and G, namely:

C1 (Ψ(x, t, λ)) = A1Ψ
†(x, t, κ(λ))A−1

1 = Ψ̃−1(x, t, λ), κ(λ) = ±λ∗, (2.3)

C2 (Ψ(x, t, λ)) = A3Ψ
∗(x, t, κ(λ))A−1

3 = Ψ̃(x, t, λ), (2.4)

where A1 and A3 are elements of the group of authomorphisms Aut g of the algebra g.
Since our aim is to preserve the form of the Lax pair, we limit ourselves by automor-
phisms preserving the Cartan subalgebra h. The reduction group GR is a finite group
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which preserves the Lax representation, i.e. it ensures that the reduction constraints are
automatically compatible with the evolution. GR must have two realizations:

i) GR ⊂ Autg

ii) GR ⊂ Conf C, i.e. as conformal mappings of the complex λ-plane.

To each gk ∈ GR we relate a reduction condition for the Lax pair as follows [24]:

Ck(U(Γk(λ))) = ηkU(λ), (2.5)

where U(x, λ) = q(x) − λJ , Ck ∈ Aut g and Γk(λ) are the images of gk and ηk = 1 or −1
depending on the choice of Ck. Since GR is a finite group then for each gk there exist an
integer Nk such that gNk

k = 11.

It is well known that Aut g ≡ V ⊗ Aut 0g where V is the group of outer automor-
phisms (the symmetry group of the Dynkin diagram) and Aut 0g is the group of inner
automorphisms. Since we start with I, J ∈ h it is natural to consider only those inner
automorphisms that preserve the Cartan subalgebra h. Then Aut 0g ≃ Ad H ⊗W where
Ad H is the group of similarity transformations with elements from the Cartan subgroup
and W is the Weyl group of g.

Generically each element gk ∈ G maps λ into a fraction-linear function of λ. Such
action however is appropriate for a more general class of Lax operators which are fraction
linear functions of λ.

3 The Caudrey–Beals–Coifman systems

3.1 Fundamental analytical solutions and scattering data for real J.

The direct scattering problem for the Lax operator (1.1) is based on the Jost solutions:

lim
x→∞

ψ(x, λ)eiλJx = 11, lim
x→−∞

φ(x, λ)eiλJx = 11, (3.1)

and the scattering matrix

T (λ) = (ψ(x, λ))−1φ(x, λ). (3.2)

The fundamental analytic solutions (FAS) χ±(x, λ) of L(λ) are analytic functions of λ for
Imλ ≷ 0 and are related to the Jost solutions by [14]

χ±(x, λ) = φ(x, λ)S±(λ) = ψ±(x, λ)T∓(λ)D±(λ), (3.3)

where T±(λ), S±(λ) and D±(λ) are the factors of the Gauss decomposition of the scat-
tering matrix:

T (λ) = T−(λ)D+(λ)Ŝ+(λ) = T+(λ)D−(λ)Ŝ−(λ) (3.4)

T±(λ) = exp

(
∑

α>0

t±±α(λ)Eα

)
, S±(λ) = exp

(
∑

α>0

s±±α(λ)Eα

)
,

D+(λ) = I exp




r∑

j=1

2d+(λ)

(αj , αj)
Hj


 , D−(λ) = I exp




r∑

j=1

2d−(λ)

(αj , αj)
H−

j


 .
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Here Hj = Hαj
, H−

j = w0(Hj), Ŝ ≡ S−1, I is an element from the universal center of
the corresponding Lie group G and the superscript + (or −) in the Gauss factors means
upper- (or lower-) triangularity for T±(λ), S±(λ) and shows that D+(λ) (or D−(λ)) are
analytic functions with respect to λ for Imλ > 0 (or Imλ < 0 respectively).

On the real axis χ+(x, λ) and χ−(x, λ) are linearly related by:

χ+(x, λ) = χ−(x, λ)G0(λ), G0(λ) = S+(λ)Ŝ−(λ), (3.5)

and the sewing function G0(λ) may be considered as a minimal system of scattering data
provided the Lax operator (1.1) has no discrete eigenvalues [14].

3.2 The CBC Construction for Semisimple Lie Algebras

Here we will sketch the construction of the FAS for the case of complex-valued regular
Cartan element J : α(ψ) 6= 0, following the general ideas of Beals and Coifmal [2] for the
sl(n) algebras and [18] for the orthogonal and symplectic algebras. These ideas consist of
the following:

1. For potentials q(x) with small norm ||q(x)||L1 < 1 one can divide the complex λ–
plane into sectors and then construct an unique FAS mν(x, λ) which is analytic in
each of these sectors Ων ;

2. For these FAS in each sector there is a certain Gauss decomposition problem for
the scattering matrix T (λ) which has an unique solution in the case of absence of
discrete eigenvalues.

The main difference between the cases of real-valued and complex-valued J lies in the fact
that for complex J the Jost solutions and the scattering data exist only for the potentials
on compact support.

We define the regions (sectors) Ων as consisting of those λ’s for which Im (λα(J)) 6= 0
for any α ∈ ∆. Thus the boundaries of the Ων ’s consist of the set of straight lines:

lα ≡ {λ : Imλα(J) = 0, α ∈ ∆}, (3.6)

and to each root α we can associate a certain line lα; different roots may define coinciding
lines.

Note that with the change from λ to λeiη and J to Je−iη (this leads the product λα(J)
invariant) we can always choose l1 to be along the positive real λ axis.

To introduce an ordering in each sector Ων we choose the vector ~aν(λ) ∈ E
r to be dual

to the element ImλJ ∈ h. Then in each sector we split ∆ into

∆ = ∆+
ν ∪ ∆−

ν , ∆±
ν = {α ∈ ∆ : Imλα(J) ≷ 0, λ ∈ Ων}. (3.7)

If λ ∈ Ων then −λ ∈ ΩM+ν (if the lines lα split the complex λ-plane into 2M sectors). We
need also the subset of roots:

δν = {α ∈ ∆ : Imλα(J) = 0, λ ∈ lν} (3.8)

which will be a root system of some subalgebra gν ⊂ g. Then we can write that

g =
M
⊕

ν=1
gν ∆ =

M
∪

ν=1
δν δν = δ+ν ∪ δ−ν , δ±ν = δν ∩ ∆±

ν .
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Thus we can describe in more details the sets ∆±
ν :

∆+
k = δ+1 ∪ δ+2 ∪ · · · ∪ δ+k ∪ δ−k+1 ∪ · · · ∪ δ−M , ∆+

k+M = ∆−
k , k = 1, . . . ,M. (3.9)

Note that each ordering in ∆ can be obtained from the ”canonical” one by an action of a
properly chosen element of the weyl group W(g).

Now in each sector Ων we introduce the FAS χν(x, λ) and mν(x, λ) = χν(x, λ)eiλJx

satisfying the equivalent equation:

i
dmν

dx
+ q(x)mν(x, λ) − λ[J,mν(x, λ)] = 0, λ ∈ Ων . (3.10)

If q(x) is a potential on compact support then the FAS mν(x, λ) are related to the Jost
solutions by

mν(x, λ) = φ(x, λ)S+
ν (λ)eiλJx = ψ(x, λ)T−

ν (x, λ)D+
ν (λ)eiλJx, (3.11)

mν−1(x, λ) = φ(x, λ)S−
ν (λ)eiλJx = ψ(x, λ)T+

ν (x, λ)D−
ν (λ)eiλJx, λ ∈ lν .

From the definitions of mν(x, λ) and the scattering matrix T (λ) we have

T (λ) = T−
ν (λ)D+

ν (λ)Ŝ+
ν (λ) = T+

ν (λ)D−
ν (λ)Ŝ−

ν (λ), λ ∈ lν (3.12)

where in the first equality we take λ = µei0 and for the second– λ = µe−i0 with µ ∈ lν .
The corresponding expressions for the Gauss factors have the form:

S+
ν (λ) = exp



∑

α∈∆+
ν

s+ν,α(λ)Eα


 , S−

ν (λ) = exp




∑

α∈∆+

ν−1

s−ν,α(λ)E−α


 ,

T+
ν (λ) = exp




∑

α∈∆+

ν−1

t+ν,α(λ)Eα


 , T−

ν (λ) = exp



∑

α∈∆+
ν

t−ν,α(λ)E−α


 ,

D+
ν (λ) = exp(d+

ν (λ) ·Hν), D−
ν (λ) = exp(d−

ν (λ) ·Hν−1). (3.13)

Here d
±
ν (λ) = (d±ν,1, . . . , d

±
ν,r) is a vector in the root space and

Hη =

(
2Hη,1

(αη,1, αη,1)
, . . . ,

2Hη,r

(αη,r, αη,r)

)
, (d±

ν (λ),Hη) =

r∑

k=1

2d±ν,k(λ)Hη,k

(αη,k, αη,k)
, (3.14)

where αη,k is the k-th simple root of g with respect to the ordering ∆+
η and Hη,k are their

dual elements in the Cartan subalgebra h.

4 The Gauge Group Action

4.1 The class of the gauge equivalent NLEEs

The notion of gauge equivalence allows one to associate to any Lax pair of the type
(1.1), (1.2) an equivalent one [18], solvable by the inverse scattering method for the gauge
equivalent linear problem:

L̃ψ̃(x, t, λ) ≡

(
i

d

dx
− λS

)
ψ̃(x, t, λ) = 0,

M̃ ψ̃(x, t, λ) ≡

(
i
d

dt
− λf(S)

)
ψ̃(x, t, λ) = 0, (4.1)
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where ψ̃(x, t, λ) = g−1(x, t)ψ(x, t, λ),

S = Adg · J ≡ g−1(x, t)Jg(x, t), (4.2)

and g(x, t) = mν(x, t, 0) is FAS at λ = 0. The functions mν(x, t, λ) are analytic with
respect to λ in each sector Ων and do not loose their analyticity for λ = 0 (in the case of
potential on compact support). From the integral representation for the FAS mν(x, t, λ)
at λ = 0 it follows that

m1(x, t, 0) = · · · = mν(x, t, 0) = · · · = m2M (x, t, 0).

Therefore the gauge group action is well defined. The zero-curvature condition [L̃, M̃ ] = 0
gives:

St −
d

dx
f(S) = 0, (4.3)

where f(S) =
∑r−1

p=0 αpS
2p+1 is an odd polynomial of S. Both Lax operators L(λ) and

L̃(λ) have equivalent spectral properties and spectral data and therefore the classes of
NLEE’s related to them are equivalent. It is natural that f(S) = g−1(x, t)Ig(x, t), i.e.,
it is uniquely determined by I. Both J and I belong to the Cartan subalgebra h so they
have common set of eigenspaces.

1) g ≃ Ar = sl(n) with n = r + 1. We have

J = diag (J1, . . . , Jn), I = diag (I1, . . . , In),

and the only constraint on the eigenvalues Jk and Ik is tr J = tr I = 0. The projectors on
the common eigensubspaces of J and I are given by:

πk(J) =
∏

s 6=k

J − Js

Jk − Js
= diag (0, . . . , 0, 1

k
, 0, . . . , 0). (4.4)

Next we note that I =
∑n

k=1 Ikπk(J). In order to derive f(S) for g ≃ sl(n) we need to
apply the gauge transformation to (4.3) with the result:

f(S) =
n∑

k=1

Ikπk(S), (4.5)

i.e., f(S) is a polynomial of order n− 1. Obviously S is restricted by:

n∏

k=1

(S − Jk) = 0, trSk = tr Jk, (4.6)

for k = 2, . . . , n.
2) g ≃ Br,Dr In order to express f(S) through their eigenvalues Jk and Ik we introduce

the diagonal matrix-valued functions:

fk(J) =
J

Jk

∏

s 6=k

J2 − J2
s

J2
k − J2

s

= Hek
∈ h, (4.7)
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where by Hek
we denote the element in h dual to the basis vector ek in the root space of

g. Using (4.7) and applying Adg we get:

I =

r∑

k=1

Ikfk(J), f(S) ≡ g−1(x, t)Ig(x, t) =

r∑

k=1

Ikfk(S). (4.8)

In addition S(x, t) satisfies the characteristic equations:

Sκ0

r∏

k=1

(S2 − J2
k ) = 0, (4.9)

where κ0 = 0 if g ≃ Cr or Dr and κ0 = 1, if g ≃ Br.
Then the equation gauge equivalent to (1.1) becomes:

St − α0Sx −

r−1∑

p=1

αp(S
2p+1)x = 0. (4.10)

The function S(x, t) ∈ g is also subject to constraints; one of them is provided by (4.9).
To construct the others we assume that g ≃ Br or Dr and use the typical representation
of g. It this settings we easily see that all odd powers of Hek

also belong to the Cartan
subalgebra h. Thus we conclude that all odd powers of S also belong to g. The invariance
properties of the trace lead to:

tr (J2k) ≡ 2

r∑

k=1

J2k
k = tr (S)2k, (4.11)

for k = 1, . . . , r. The conditions (4.11) are precisely r independent algebraic constraints
on S. Solving for them we conclude that the number of independent coefficients in S is
equal to the number of roots |∆| of g.

4.2 The Minimal Set of Scattering Data for L(λ) and L̃(λ)

We skip the details about CBC construction which can be found in [18] and go to the
minimal set of scattering data for the case of complex J which are defined by the sets F1

and F2 as follows:

F1 =
2M
∪

ν=1
F1,ν , F2 =

2M
∪

ν=1
F2,ν ,

F1,ν = {ρ±B,ν,α(λ), α ∈ δ+ν , λ ∈ lν} F2,ν = {τ±B,ν,α(λ), α ∈ δ+ν , λ ∈ lν}, (4.12)

where

ρ±B,ν,α(λ) = 〈S±
ν (λ)BŜ±

ν (λ), E∓α〉, τ±B,ν,α(λ) = 〈T±
ν (λ)BT̂±

ν (λ), E∓α〉, (4.13)

with α ∈ δ+ν , λ ∈ lν and B is a properly chosen regular element of the Cartan subalgebra
h. Without loose of generality we can take in (4.13) B = Hα. Note that the functions
ρ±B,ν,α(λ) and τ±B,ν,α(λ) are continuous functions of λ for λ ∈ lν .

If we choose J in such way that 2M = |∆|– the number of the roots of g. then to
each pair of roots {α,−α} one can relate a separate pair of rays {lα, lα+M}, and lα 6= lβ
if α 6= ±β. In this case each of the subalgebras gα will be isomorphic to sl(2).
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In order to determine the scattering data for the gauge equivalent equations we need
to start with the FAS for these systems:

m̃±
ν (x, λ) = g−1(x, t)m±

ν (x, λ)g−, (4.14)

where g− = limx→−∞ g(x, t) and due to (1.2) and g− = T̂ (0). In order to ensure that
the functions ξ̃±(x, λ) are analytic with respect to λ the scattering matrix T (0) at λ = 0
must belong to the corresponding Cartan subgroup H. Then Equation (4.14) provide the
fundamental analytic solutions of L̃. We can calculate their asymptotics for x→ ±∞ and
thus establish the relations between the scattering matrices of the two systems:

lim
x→−∞

ξ̃+(x, λ) = e−iλJxT (0)S+(λ)T̂ (0) lim
x→∞

ξ̃+(x, λ) = e−iλJxT−(λ)D+(λ)T̂ (0)(4.15)

with the result: T̃ (λ) = T (λ)T̂ (0). Obviously T̃ (0) = 11. The factors in the corresponding
Gauss decompositions are related by:

S̃±(λ) = T (0)S±(λ)T̂ (0), T̃±(λ) = T±(λ) D̃±(λ) = D±(λ)T̂ (0).

On the real axis again the FAS ξ̃+(x, λ) and ξ̃−(x, λ) are related by ξ̃+(x, λ) = ξ̃−(x, λ)G̃0(λ)

with the normalization condition ξ̃(x, λ = 0) = 11 and G̃0(λ) = S̃+(λ) ˆ̃S−(λ) again can be
considered as a minimal set of scattering data.

The minimal set of scattering data for the gauge-equivalent CBC systems are defined
by the sets F̃1 and F̃2 as follows:

F̃1 =
2M
∪

ν=1
F̃1,ν , F̃2 =

2M
∪

ν=1
F̃2,ν ,

F̃1,ν = {ρ̃±B,ν,α(λ), α ∈ δ+ν , λ ∈ lν} F̃2,ν = {τ̃±B,ν,α(λ), α ∈ δ+ν , λ ∈ lν}, (4.16)

where

ρ̃±B,ν,α(λ) = 〈T (0)S±
ν (λ)BŜ±

ν (λ)T̂ (0), E∓α〉, τ̃±B,ν,α(λ) = 〈T±
ν (λ)BT̂±

ν (λ), E∓α〉,(4.17)

with α ∈ δ+ν , λ ∈ lν and B is again a properly chosen regular element of the Cartan
subalgebra h. Without loose of generality we can take in (4.17) B = Hα (as in (4.13)).
That the functions ρ̃±B,ν,α(λ) and τ̃±B,ν,α(λ) are continuous functions of λ for λ ∈ lν and

have the same analyticity properties as the functions ρ±B,ν,α(λ) and τ±B,ν,α(λ).

4.3 Integrals of Motion and Hierarchies of Hamiltonian Structures

Both classes of NLEE’s are infinite dimensional completely integrable Hamiltonian systems
and possess hierarchies of Hamiltonian structures.

The phase space MCBC is the linear space of all off-diagonal matrices q(x, t) tending fast
enough to zero for x→ ±∞. The hierarchy of pair-wise compatible symplectic structures
on MCBC is provided by the 2-forms:

Ω
(k)
CBC = i

∫ ∞

−∞

dxtr
(
δq(x, t) ∧ Λk[J, δq(x, t)]

)
, (4.18)

where Λ = (Λ+ +Λ−)/2 is the generating (recursion) operator for (1.1) defined as follows:

Λ±Z(x) = ad−1
J (1 − π0)

(
i
dZ

dx
+ [q(x), Z(x)] + i

[
q(x), π0

∫ x

±∞

dy [q(y), Z(y)]

])
,
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where π0(X) = ad−1
J ◦ adJ(X). The symplectic forms Ω

(k)
CBC can be expressed in terms of

the scattering data for L(λ):

Ω
(k)
CBC =

ck
2π

M∑

ν=1

∫

λ∈lν∪lM+ν

dλλk
(
Ω+

0,ν(λ) − Ω−
0,ν(λ)

)
,

Ω±
0,ν(λ) =

〈
D̂±

ν (λ)T̂∓
ν (λ)δT∓

ν (λ)D±
ν (λ) ∧ Ŝ±

ν (λ)δS±
ν (λ)

〉
. (4.19)

Note that the kernels of Ω
(k)
CBC differ only by the factor λk so all of them can be casted

into canonical form simultaneously.
The phase space Mgauge of the gauge equivalent to the CBC systems is the manifold

of all S(x, t) determined by the second relation in (4.2). The family of compatible 2-forms
is:

Ω̃(k)
gauge =

i

4

∫ ∞

−∞

dxtr
(
δS(0) ∧ Λ̃k[S(0), δS(0)(x, t)]

)
. (4.20)

Here Λ̃ is the recursion operator for the gauge equivalent to the CBC systems:

Λ̃±Z̃ = iad−1
S(x) (1 − π̃0(x))

{
dZ̃

dx
+

2∑

k=1

[h̃k(x), ad−1
S(x)]

∫ x

±∞

dy
〈
[h̃k(y), ad

−1
S(y)Sy], Z̃(y)

〉
,

}

where h̃k(x, t) = g−1(x, t)Hkg(x, t), and 〈Hk,Hj〉 = 〈h̃k(x, t), h̃j(x, t)〉 = δjk.
The spectral theory of these two operators Λ and Λ̃ underlie all the fundamental prop-

erties of these two classes of gauge equivalent NLEE, for details see [18]. Note that the

gauge transformation relates nontrivially the symplectic structures, i.e. Ω
(k)
NLSE ≃ Ω̃

(k+2)
HFE

[26, 18].

5 Conclusions

We will finish this article with several concluding remarks. To CBC systems and their
gauge equivalent one can apply the analysis [18] and derive the completeness relations
for the corresponding system of squared solutions. Such analysis will allow one to prove
the pair-wise compatibility of the Hamiltonian structures and eventually to derive their
action-angle variables, see e.g. [27] and [5] for the Ar-series.

For the case of singular J (α(J) = 0) the construction of FAS mν(x, t, λ) and m̃ν(x, t, λ)
requires the use of generalized Gauss decomposition in which the factors D±

ν (λ) are block-
diagonal, while T±

ν (t, λ) and S±
ν (t, λ) are block-triangular. This will be addressed to a

subsequent paper.
The approach presented here allows one to consider CBC systems with more general

λ- dependence, like the Principal Chiral field models and other relativistic invariant fiels
theories [29].

If g ≃ so(5) then the corresponding gauge equivalent system describes isoparametric
surfaces [10].

Finally, some open problems are : 1)to study the internal structure of the soliton
solutions and soliton interactions (for both types of systems); 2) to study reductions of
the gauge equivalent to CBC systems.
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