Abstract

The models of the non-linear optics in which solitons were appeared are considered. These models are of paramount importance in studies of non-linear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency, and parametric interaction of three waves. At the present time there are a number of the theories based on completely integrable systems of equations, which are both generations of the original known models and new ones. The modified Korteweg-de Vries equation, the non- linear Schrodinger equation, the derivative non-linear Schrodinger equation, Sine-Gordon equation, the reduced Maxwell-Bloch equation, Hirota equation, the principal chiral field equations, and the equations of massive Thirring model are gradually putting together a list of soliton equations, which are usually to be found in non-linear optics theory.Comment: Latex, 17 pages, no figures, submitted to Pramana

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019