28 research outputs found
Expression Analysis of MicroRNAs in FFPE samples of canine cutaneous and oral melanoma by RT-qPCR
MicroRNA (miRNA), a class of small, non-coding RNA - regulating post-transcriptionally protein expression - are emerging as clinical biomarkers in many pathologies, including cancer [1]. Since miRNA are supposed to represent fundamental key regulators, better understanding of melanoma biology is essential to improve staging and therapy. The aim of the study was to investigate whether miRNA expression can vary in canine melanoma samples derived from formalin-fixed-paraffin-embedded (FFPE) tissues. Experimental design of the study included three groups, each one composed of 7 animals: i) control healthy skin group ii) oral melanoma group iii) skin melanoma group. The histhopatology and immunoistochemistry details of dogs included in the study are previously reported [2]. Two tissue slides were used for miRNA extraction. The expression levels of seven miRNA - miR-145, miR-146a, miR-425-5p, miR-223, miR-365, miR-155 and miR-134 - were detected and assessed by qPCR using TaqManŽ probes [3-5]. Five miRNA were significantly up-(n=3) or down-(n=2) regulated. In details, miR-146a and miR-155 abundance was increased as compared with control in both oral and skin melanoma (Fig 1 B,E) (p = 0.004 and 0.014 and p = 0.043 and 0.035 respectively), while the levels of miR-145 and miR-365 were lower (Fig 1 A,D) (p = 0.018 and 0.008 and p = 0.01 and 0.028, respectively). MiR-425-5p was upregulated (p = 0.039) only in skin melanoma (Fig. 1 C). Furthermore, functional analysis, carried out using miRNet web-based tool, showed that 76 genes related to cancer-associated pathways were possible target of these five microRNA (p = 6.95E-9); in particular, 21 target genes were associated with melanoma (p = 1.47E-5), including BRAF and CDK, E2F, FGF and PIK3 families. In conclusion, miR-145, miR-146a, miR-425-5p, miR-365 and miR-155 are differentially expressed in melanoma and healthy FFPE samples, suggesting that they may play a role in canine melanoma pathogenesis and/or progression
Lung ultrasound features and relationships with respiratory mechanics of evolving BPD in preterm rabbits and human neonates
Evolving bronchopulmonary dysplasia (BPD) is characterized by impaired alveolarization leading to lung aeration inhomogeneities. Hyperoxia-exposed preterm rabbits have been proposed to mimic evolving BPD; therefore, we aimed to verify if this model has the same lung ultrasound and mechanical features of evolving BPD in human neonates. Semiquantitative lung ultrasound and lung mechanics measurement was performed in 25 preterm rabbits (28days of gestation) and 25 neonates (mean gestational age approximate to 26wk) with evolving BPD. A modified rabbit lung ultrasound score (rLUS) and a validated neonatal lung ultrasound score (WS) were used. Lung ultrasound images were recorded and evaluated by two independent observers blinded to each other's evaluation. Lung ultrasound findings were equally heterogeneous both in rabbits as in human neonates and encompassed all the classical lung ultrasound semiology. Lung ultrasound and histology examination were also performed in 13 term rabbits kept under normoxia as further control and showed the absence of ultrasound and histology abnormalities compared with hyperoxia-exposed preterm rabbits. The interrater absolute agreement for the evaluation of lung ultrasound images in rabbits was very high [ICC: 0.989 (95%Cl: 0.975-0.995); P < 0.0001], and there was no difference between the two observers. Lung mechanics parameters were similarly altered in both rabbits and human neonates. There were moderately significant correlations between airway resistances and lung ultrasound scores in rabbits (rho = 0.519; P = 0.008) and in neonates (rho = 0.409; P = 0.042). In conclusion, the preterm rabbit model fairly reproduces the lung ultrasound and mechanical characteristics of preterm neonates with evolving BPD.NEW & NOTEWORTHY We have reported that hyperoxia-exposed preterm rabbits and human preterm neonates with evolving BPD have the same lung ultrasound appearance, and that lung ultrasound can be fruitfully applied on this model with a brief training. The animal model and human neonates also presented the same relationship between semiquantitative ultrasound-assessed lung aeration and airway resistances. In conclusion, this animal model fairly reproduce evolving BPD as it is seen in clinical practice
Sample preparation strategy for the detection of steroid-like compounds using MALDI mass spectrometry imaging: pulmonary distribution of budesonide as a case study
10openInternationalItalian coauthor/editorCorticosteroids as budesonide can be effective in reducing topic inflammation processes in different organs. Therapeutic use of budesonide in respiratory diseases, like asthma, chronic obstructive pulmonary disease, and allergic rhinitis is well known. However, the pulmonary distribution of budesonide is not well understood, mainly due to the difficulties in tracing the molecule in lung samples without the addition of a label. In this paper, we present a matrix-assisted laser desorption/ionization mass spectrometry imaging protocol that can be used to visualize the pulmonary distribution of budesonide administered to a surfactant-depleted adult rabbit. Considering that budesonide is not easily ionized by MALDI, we developed an on-tissue derivatization method with Girardâs reagent P followed by ferulic acid deposition as MALDI matrix. Interestingly, this sample preparation protocol results as a very effective strategy to raise the sensitivity towards not only budesonide but also other corticosteroids, allowing us to track its distribution and quantify the drug inside lung samples.openZecchi, Riccardo; Franceschi, Pietro; Tigli, Laura; Amidani, Davide; Catozzi, Chiara; Ricci, Francesca; Salomone, Fabrizio; Pieraccini, Giuseppe; Pioselli, Barbara; Mileo, ValentinaZecchi, R.; Franceschi, P.; Tigli, L.; Amidani, D.; Catozzi, C.; Ricci, F.; Salomone, F.; Pieraccini, G.; Pioselli, B.; Mileo, V
Physiological, biochemical, and biophysical characterization of the lung-lavaged spontaneously-breathing rabbit as a model for respiratory distress syndrome
Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in spontaneously-breathing premature infants with respiratory distress syndrome (RDS). Surfactant administration techniques compatible with nCPAP ventilation strategy are actively investigated. Our aim is to set up and validate a respiratory distress animal model that can be managed on nCPAP suitable for surfactant administration techniques studies. Surfactant depletion was induced by bronchoalveolar lavages (BALs) on 18 adult rabbits. Full depletion was assessed by surfactant component analysis on the BALs samples. Animals were randomized into two groups: Control group (nCPAP only) and InSurE group, consisting of a bolus of surfactant (Poractant alfa, 200 mg/kg) followed by nCPAP. Arterial blood gases were monitored until animal sacrifice, 3 hours post treatment. Lung mechanics were evaluated just before and after BALs, at the time of treatment, and at the end of the procedure. Surfactant phospholipids and protein analysis as well as surface tension measurements on sequential BALs confirmed the efficacy of the surfactant depletion procedure. The InSurE group showed a significant improvement of blood oxygenation and lung mechanics. On the contrary, no signs of recovery were appreciated in animals treated with just nCPAP. The surfactant-depleted adult rabbit RDS model proved to be a valuable and efficient preclinical tool for mimicking the clinical scenario of preterm infants affected by mild/moderate RDS who spontaneously breathe and do not require mechanical ventilation. This population is of particular interest as potential target for the non-invasive administration of surfactant
A novel deuterium-based model for measurement of exogenous surfactant using deuterium-depleted water
: Stable isotope tracers, like 13 C, can be used for the measurement of the partition between the endogenous and exogenous pulmonary disaturated-phosphatidylcholine (DSPC). Deuterium labeling methods are still not fully explored. Our aim was to investigate the feasibility of using deuterium-depleted water (DDW) and deuterium-enriched water (DEW) to measure endogenous and exogenous pulmonary DSPC in a rabbit model of surfactant depletion. Data obtained from the 13 C dilution method were used as a reference. We studied 9 adult rabbits: 4 drank DDW and 5 DEW for 5 days. Lung surfactant depletion was induced at Day 5 by repeated saline bronchoalveolar lavages (BAL), which were stored as a pool (BAL pool). After endogenous surfactant depletion, rabbits received exogenous surfactant followed by a second BAL depletion procedure (End-Experiment Pool). DSPC quantity, and palmitic acid (PA)-DSPC 2 H/1 H (δ2 H) and 13 C/12 C ratios (δ13 C) of exogenous surfactant batches and of BAL pools were measured by High-Resolution Mass Spectrometry. The amount of exogenous surfactant recovered from the lungs ranged from 45% to 81% and, it was highly correlated with those obtained with the use of the 13 C (râ=â0.9844, pâ<â0.0001). We demonstrated that commercially available purified DDW and even low doses of DEW can be used to modify the deuterium background of endogenous surfactants with the purpose of measuring the contribution of exogenous surfactants to the endogenous alveolar surfactant pool
Surfactant replacement therapy in combination with different non-invasive ventilation techniques in spontaneously-breathing, surfactant-depleted adult rabbits.
Nasal intermittent positive pressure ventilation (NIPPV) holds great potential as a primary ventilation support method for Respiratory Distress Syndrome (RDS). The use of NIPPV may also be of great value combined with minimally invasive surfactant delivery. Our aim was to implement an in vivo model of RDS, which can be managed with different non-invasive ventilation (NIV) strategies, including non-synchronized NIPPV, synchronized NIPPV (SNIPPV), and nasal continuous positive airway pressure (NCPAP). Forty-two surfactant-depleted adult rabbits were allocated in six different groups: three groups of animals were treated with only NIV for three hours (NIPPV, SNIPPV, and NCPAP groups), while three other groups were treated with surfactant (SF) followed by NIV (NIPPV+SF, SNIPPV+SF, and NCPAP+SF groups). Arterial gas exchange, ventilation indices, and dynamic compliance were assessed. Post-mortem the lungs were sampled for histological evaluation. Surfactant depletion was successfully achieved by repeated broncho-alveolar lavages (BALs). After BALs, all animals developed a moderate respiratory distress, which could not be reverted by merely applying NIV. Conversely, surfactant administration followed by NIV induced a rapid improvement of arterial oxygenation in all surfactant-treated groups. Breath synchronization was associated with a significantly better response in terms of gas exchange and dynamic compliance compared to non-synchronized NIPPV, showing also the lowest injury scores after histological assessment. The proposed in vivo model of surfactant deficiency was successfully managed with NCPAP, NIPPV, or SNIPPV; this model resembles a moderate respiratory distress and it is suitable for the preclinical testing of less invasive surfactant administration techniques
Physiological, Biochemical, and Biophysical Characterization of the Lung-Lavaged Spontaneously-Breathing Rabbit as a Model for Respiratory Distress Syndrome.
Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in spontaneously-breathing premature infants with respiratory distress syndrome (RDS). Surfactant administration techniques compatible with nCPAP ventilation strategy are actively investigated. Our aim is to set up and validate a respiratory distress animal model that can be managed on nCPAP suitable for surfactant administration techniques studies. Surfactant depletion was induced by bronchoalveolar lavages (BALs) on 18 adult rabbits. Full depletion was assessed by surfactant component analysis on the BALs samples. Animals were randomized into two groups: Control group (nCPAP only) and InSurE group, consisting of a bolus of surfactant (Poractant alfa, 200 mg/kg) followed by nCPAP. Arterial blood gases were monitored until animal sacrifice, 3 hours post treatment. Lung mechanics were evaluated just before and after BALs, at the time of treatment, and at the end of the procedure. Surfactant phospholipids and protein analysis as well as surface tension measurements on sequential BALs confirmed the efficacy of the surfactant depletion procedure. The InSurE group showed a significant improvement of blood oxygenation and lung mechanics. On the contrary, no signs of recovery were appreciated in animals treated with just nCPAP. The surfactant-depleted adult rabbit RDS model proved to be a valuable and efficient preclinical tool for mimicking the clinical scenario of preterm infants affected by mild/moderate RDS who spontaneously breathe and do not require mechanical ventilation. This population is of particular interest as potential target for the non-invasive administration of surfactant