30 research outputs found

    In situ quantification of CH4 bubbling events from a peat soil using a new infrared laser spectrometer

    Get PDF
    International audienceCH4 emissions from peatlands are space- and time-dependent. The variety of efflux routes contributes to these variabilities. CH4 bubbling remains difficult to investigate since it occurs on a timescale of seconds. The aims of this study were to test the capacity of a recently built infrared high resolution spectrometer, SPIRIT (SPectrometre Infra-Rouge In situ Troposphérique), to (1) measure in situ CH4 fluxes, (2) observe online bubbling events with quantification of CH4 emission fluxes corresponding to this very sudden degassing event. Material and methods: The closed dynamic chamber method was used and the gas concentration was measured every 1.5 seconds. Emission fluxes were calculated by the accumulation rate of CH4 against time. Measurements were undertaken during daytime in March 2009 and during day- and nighttime in May 2009, in a bare peat area, temporarily forming a shallow pool. Results and discussion: The results show that the CH4 emissions estimated with the SPIRIT ranged from 2.79 to 86.0 mg CH4-C m-2 h-1. These values are consistent with those already published. The high emissions, both through diffusion and bubbling, were on the same order as the emissions estimated in natural shallow pools. During daytime, CH4 bubbling was higher in May (56.2% of the total emission) than in March (40.7%) probably because of increased CH4 production and accumulation in peat. In May, bubbling was higher at nighttime (68.6%) than in daytime (56.2%). This has an important implication for carbon budget assessment in peatlands, particularly in boreal areas. Conclusions: The recently built infrared spectrometer, SPIRIT, was able to reliably measure CH4 fluxes and quantify CH4 flux during the degassing of a bubble. The emissions obtained are in agreement with previously published data using other measurement techniques. The results of this preliminary work highlight (1) the importance of shallow pools in peatland CH4 emissions, (2) the sensitivity of such fluxes to atmospheric pressure, a relation that has not been fully investigated or taken into account in assessing peatland carbon balance

    INTRUSION OF RECENT AIR IN POLAR STRATOSPHERE DURING SUMMER 2009 REVEALED BY BALLOON-BORNE IN SITU CO MEASUREMENTS

    Get PDF
    International audienceThe SPIRALE (Spectroscopie Infa-Rouge par Absorption de Lasers Embarqués) balloon-borne instrument has been launched twice within 17 days in the polar region (Kiruna, Sweden, 67.9°N-21.1°E) during summer, at the beginning and at the end of August 2009. In situ measurements of several trace gases have been performed including CO and O 3 between 10 and 34 km height, with very high vertical resolution (~5 m). The both flight results are compared and the CO stratospheric profile of the first flight presents specific structures associated with mid-latitude intrusion in the lowest stratospheric levels. Their interpretation is made with the help of results from several modeling tools (MIMOSA and FLEXTRA) and available satellite data (IASI). We also used the O 3 profile correlated with CO to calculate the proportion of recent air in the polar stratosphere. The results indicate the impact of East Asia urban pollution on the chemistry of polar stratosphere in summer

    A portable infrared laser spectrometer for flux measurements of trace gases at the geosphere-atmosphere interface

    No full text
    International audienceA portable infrared laser absorption spectrometer named SPIRIT (SPectrom'etre Infra-Rouge In situ Troposph'erique) has been set up for the simultaneous flux measurements of trace gases at the geosphere-atmosphere interface. It uses a continuous wave distributed feedback room temperature quantum cascade laser and a patented new optical multi-pass cell. The aim of SPIRIT field studies is to get a better understanding of land and water bodies to atmosphere exchange mechanisms of greenhouse gases (GHG). The analytical procedures to derive concentrations and fluxes are described, as well as the performances of the instrument under field conditions. The ability of SPIRIT to assess space and time dependence emissions of two GHG--nitrous oxide (N2O) and methane (CH4)--for different types of ecosystems is demonstrated through in situ measurements on peatland, on fertilized soil, and on water body systems. The objectives of these investigations and preliminary significant results are reported

    A Spectra Classification Methodology of Hyperspectral Infrared Images for Near Real-Time Estimation of the SO2 Emission Flux from Mount Etna with LARA Radiative Transfer Retrieval Model

    No full text
    International audienceFast and accurate quantification of gas fluxes emitted by volcanoes is essential for the risk mitigation of explosive eruption, and for the fundamental understanding of shalloweruptive processes. Sulphur dioxide (SO2), in particular, is a reliable indicator to predict upcoming eruptions, and its systemic characterization allows the rapid assessment of sudden changes in eruptive dynamics. In this regard, infrared (IR) hyperspectral imaging is a promising new technology for accurately measure SO2 fluxes day and night at a frame rate down to 1 image per second. The thermal infrared region is not very sensitive to particle scattering, which is an asset for the study of volcanic plume. A ground based infrared hyperspectral imager was deployed during the IMAGETNA campaign in 2015 and provided high spectral resolution images of the Mount Etna (Sicily, Italy) plume from the North East Crater (NEC), mainly. The LongWave InfraRed (LWIR) hyperspectral imager, hereafter name Hyper-Cam, ranges between 850–1300 cm-1 (7.7–11.8 ”m). The LATMOS (Laboratoire AtmosphĂšres Milieux Observations Spatiales) Atmospheric Retrieval Algorithm (LARA), which is used to retrieve the slant column densities (SCD) of SO2, is a robust and a complete radiative transfer model, well adapted to the inversion of round-based remote measurements. However, the calculation time to process the raw data and retrieve the infrared spectra, which is about seven days for the retrieval of one image of SO2 SCD, remains too high to infer near real-time (NRT) SO2 emission fluxes. A spectral image classification methodology based on two parameters extracting spectral features in the O3 and SO2 emission bands was developed to create a library. The relevance is evaluated in detail through tests. From data acquisition to the generation of SO2 SCD images, this method requires only ~40 s per image, which opens the possibility to infer NRT estimation of SO2 emission fluxes from IR hyperspectral imager measurements

    A Polysomnographic and Cluster Analysis of Periodic Limb Movements in Sleep of Restless Legs Syndrome Patients with Psychiatric Conditions

    No full text
    Only survey studies have linked specific individual psychiatric disorders such as anxiety, depression and schizophrenia to Restless Legs Syndrome (RLS), Periodic Limb Movements in Sleep (PLMS) or both. We therefore aim to polysomnographically characterize sleep in a sample of physician-based, newly diagnosed cases of RLS with various ICD-10 psychiatric diagnoses. Retrospective analysis of data from a convenience sample of psychiatric patients (n = 43) per standard clinical sleep disorder cut-offs was conducted. Next, a cluster analysis was performed on the sleep data, taking into account the psychiatric diagnosis, comorbid non-psychiatric somatic problems and medication. We found that 37.2% of our sample showed clinically significant PLMS ≄ 15 and 76.5% exhibited an apnea hypopnea index (AHI) ≄ 5. Sleep structure was unaltered apart from the PLMS-related parameters. Two clusters were statistically identified: Cluster 1 primarily representing recurrent major depressive issues and Cluster 2 representing present but not predominant mood symptomatology as well as mixed disorders with personality problems. The known confounders were controlled. A PLMS index ≄ 15 was differentially distributed among the two clusters with Cluster 1: 10 out of 17 with PLMS index ≄ 15; Cluster 2: 1 out of 16 with PLMS index ≄15; whilst AHI was not different. Patients in Cluster 1 have a higher rate of periodic leg movements than patients in Cluster 2. This suggests that the high association with PLMS is primarily driven by affective disorders. Our findings warrant questioning of RLS symptomatology in patients with psychiatric conditions

    A new portable infrared laser spectrometer for field measurements of N2O and CH4 emissions at the air / land interface

    No full text
    International audienceA new type of portable infra red spectrometer (SPIRIT : SPectromÚtre Infra-Rouge In situ Troposphérique) using a quantum cascade laser and a patented new long multipass optical cell has been set up for the simultaneous flux measurements of two Greenhouse Gases (GHG): nitrous oxide (N2O) and methane (CH4), at the air land interface. The basics of the instrument, the data derivation for trace gas concentration determination in the atmosphere, and the chamber method to derive emission fluxes of these GHG from lands are described. The analytical performances of SPIRIT are tested in two types of lands in Region Centre (France): (i) an anthropogenized sphagnum peatland (Laguette; Neuvy sur Barangeon) characterized by vascular plants invasion (ii) a sandy soil in the site of INRA-Orléans. The ability of SPIRIT to assess with precision spatial and temporal dependence emissions of these GHG in the field is demonstrated. In addition emission modes (diffusive episodes and bubbling events) can be observed and quantified due to the high frequency (1 Hz) of the concentration measured. SPIRIT adaptation for detailed process-oriented studies of GHG flux emissions is also demonstrated by the investigation of emission dependence as a function of biotic and abiotic parameters (including diurnal cycle sensibility and emission modes); processes of C exchanges between different compartments of the biota can be studied. Such investigations are required for a better understanding of the lands to atmosphere exchange mechanisms of GHG and for the prediction of feedbacks on GHG emissions in response to anthropogenic or climate change perturbations of terrestrial ecosystems. Implications of SPIRIT in other air lands studies are also presented

    Detailed modeling of the atmospheric degradation mechanism of very-short lived brominated species

    No full text
    International audienceDetailed chemical reaction schemes for the atmospheric degradations of the very short-lived species (VSLS) bromoform (CHBr3) and dibromomethane (CH2Br2) have been established. These degradation schemes have been implemented in the meteorological/tracer transport model CATT-BRAMS used in the present case as pseudo one-dimensional model with chemistry of CH4, CO, HOx, NOx, NOy and Ox. They include the main possible reactions of the intermediate brominated peroxy radicals RO2 (with R ΠCH2Br, CHBr2 and CBr3) for which the most likely reaction pathways with HO2 have been found using ab initio computational calculations. The full degradation schemes have been run for two well-defined realistic scenarios, "clean" atmosphere and "moderately" NOy-polluted atmosphere, as representative of a tropical coastal region where these VSLS natural emissions are expected to be important. The Henry's law constants of the brominated organics products have been estimated by using the Bond Contribution Method (BCM; Meylan and Howard, 1991) or the Molecular Connectivity Index (MCI; Nirmalakhandan and Speece, 1988). Using these constants, the least soluble species formed from the VSLS degradation are found to be CBr2O, CHBrO, CBr3O2NO2, CHBr2O2NO2, BrO, BrONO2 and HOBr, which leads those to be potentially transported into the tropical tropopause layer (TTL) in case of deep convection and contribute to stratospheric bromine additionally to the original substances. For bromoform and dibromomethane degradation, the moderate NOy pollution increases the production of the least soluble species and thus approximately doubles the bromine quantity potentially able to reach the TTL (from 22.5% to 43% for CHBr3 and from 8.8% to 20.2% for CH2Br2). The influence of the reactions of the RO2 radicals with HO2, CH3O2 and NO2 on the nature and abundance of the stable intermediate and end-products has been tested for CHBr3 degradation. As a result, the reactions of the RO2 radicals with NO2 have no impact. Taking into account the reaction between RO2 and CH3O2 and modifying the branching ratios of the reaction between RO2 and HO2 lead to a small impact on the bromoform degradation by slightly decreasing (by 10%) the bromine quantity potentially able to reach the TTL. As a final point, in contrast to CHBr3, CH2Br2 degradation produces negligible quantities of organics species and the effects of pollution increase only the inorganic species production. By taking into account the results of these tests, new simplified degradation schemes for CHBr3 and CH2Br2 are proposed

    Hyperpectral infrared imaging of volcanic plume at Mt Etna during IMAGETNA campaign

    No full text
    International audienceKnowledge of the composition and the spatial evolution of volcanic plumes provides insights to processes occurring in the Earth's interior. On the other hand, quantification of gaseous emission fluxes is also a fundamental task in the framework of climate change in order to refine the contribution of natural emissions. UV cameras allow us to image volcanic plumes and evaluate SO2 fluxes, although can be subject to uncertainties in the retrieval. Another technique of imaging is now available in the infra-red. Such infrared hyperspectral imager (pixel-by-pixel spectra) might represent a major step forward in volcanology due to its potential to allow SO2 flux measurements during the night and gives access to additional relevant species but has to be tested and validated as a first step. In June 2015 a campaign of measurements - IMAGETNA - was performed at Mt Etna (Pizzi Deneri Volcano Observatory) with the intent to explore the application of these techniques for volcanic gas measurements all together. Over five days the volcanic plume was remotely observed simultaneously by employing three different hyperspectral imagers (commercial and under development), FTIR instrument, UV LWIR cameras, and radiometer. Results gathered from IR hyperspectral imageur will be presented and compared to SO2 UV-Vis camera measurements

    Hyperpectral infrared imaging of volcanic plume at Mt Etna during IMAGETNA campaign

    No full text
    International audienceKnowledge of the composition and the spatial evolution of volcanic plumes provides insights to processes occurring in the Earth's interior. On the other hand, quantification of gaseous emission fluxes is also a fundamental task in the framework of climate change in order to refine the contribution of natural emissions. UV cameras allow us to image volcanic plumes and evaluate SO2 fluxes, although can be subject to uncertainties in the retrieval. Another technique of imaging is now available in the infra-red. Such infrared hyperspectral imager (pixel-by-pixel spectra) might represent a major step forward in volcanology due to its potential to allow SO2 flux measurements during the night and gives access to additional relevant species but has to be tested and validated as a first step. In June 2015 a campaign of measurements - IMAGETNA - was performed at Mt Etna (Pizzi Deneri Volcano Observatory) with the intent to explore the application of these techniques for volcanic gas measurements all together. Over five days the volcanic plume was remotely observed simultaneously by employing three different hyperspectral imagers (commercial and under development), FTIR instrument, UV LWIR cameras, and radiometer. Results gathered from IR hyperspectral imageur will be presented and compared to SO2 UV-Vis camera measurements
    corecore