13 research outputs found

    Same same but different: Code-Switching in Schweizer SMS – ein Vergleich zwischen vier Sprachen

    Get PDF
    This study examines the formal and functional aspects of code-switching (CS) in a Swiss corpus of 26'000 text messages (SMS). Four corpora (Swiss-German, French, Italian and Romansh) are compared with regard to the absolute number of CS, the languages used for CS, the grammatical properties of the CS elements and their potential functions. The aim is to find out: a) which patterns are representative of one or more individual lan-guages and b) which patterns are characteristic for SMS-communication in general and/or are valid for Switzerland as a whole. With regard to the differences in the number of CS and the languages used, the respective patterns seem to mirror the different lan-guage contact situations in Switzerland. As for the described CS-types, the corpora under scrutiny seem to share the extensive use of one-token alternations (isolated items) that carry out framing functions and may point out a shared type of minimal multilingual practice

    Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer

    Get PDF
    Background: Preclinical studies demonstrate synergism between cancer immunotherapy and local radiation, enhancing anti-tumor effects and promoting immune responses. BI1361849 (CV9202) is an active cancer immunotherapeutic comprising protamine-formulated, sequence-optimized mRNA encoding six non-small cell lung cancer (NSCLC)-associated antigens (NY-ESO-1, MAGE-C1, MAGE-C2, survivin, 5T4, and MUC-1), intended to induce targeted immune responses. Methods: We describe a phase Ib clinical trial evaluating treatment with BI1361849 combined with local radiation in 26 stage IV NSCLC patients with partial response (PR)/stable disease (SD) after standard first-line therapy. Patients were stratified into three strata (1: non-squamous NSCLC, no epidermal growth factor receptor (EGFR) mutation, PR/SD after ≥4 cycles of platinum- and pemetrexed-based treatment [n = 16]; 2: squamous NSCLC, PR/SD after ≥4 cycles of platinum-based and non-platinum compound treatment [n = 8]; 3: non-squamous NSCLC, EGFR mutation, PR/SD after ≥3 and ≤ 6 months EGFR-tyrosine kinase inhibitor (TKI) treatment [n = 2]). Patients received intradermal BI1361849, local radiation (4 × 5 Gy), then BI1361849 until disease progression. Strata 1 and 3 also had maintenance pemetrexed or continued EGFR-TKI therapy, respectively. The primary endpoint was evaluation of safety; secondary objectives included assessment of clinical efficacy (every 6 weeks during treatment) and of immune response (on Days 1 [baseline], 19 and 61). Results: Study treatment was well tolerated; injection site reactions and flu-like symptoms were the most common BI1361849-related adverse events. Three patients had grade 3 BI1361849-related adverse events (fatigue, pyrexia); there was one grade 3 radiation-related event (dysphagia). In comparison to baseline, immunomonitoring revealed increased BI1361849 antigen-specific immune responses in the majority of patients (84%), whereby antigen-specific antibody levels were increased in 80% and functional T cells in 40% of patients, and involvement of multiple antigen specificities was evident in 52% of patients. One patient had a partial response in combination with pemetrexed maintenance, and 46.2% achieved stable disease as best overall response. Best overall response was SD in 57.7% for target lesions. Conclusion: The results support further investigation of mRNA-based immunotherapy in NSCLC including combinations with immune checkpoint inhibitors. Trial registration: ClinicalTrials.gov, Identifier: NCT01915524

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Unbiased screen for pathogens in human paraffin-embedded tissue samples by whole genome sequencing and metagenomics.

    No full text
    Identification of bacterial pathogens in formalin fixed, paraffin embedded (FFPE) tissue samples is limited to targeted and resource-intensive methods such as sequential PCR analyses. To enable unbiased screening for pathogens in FFPE tissue samples, we established a whole genome sequencing (WGS) method that combines shotgun sequencing and metagenomics for taxonomic identification of bacterial pathogens after subtraction of human genomic reads. To validate the assay, we analyzed more than 100 samples of known composition as well as FFPE lung autopsy tissues with and without histological signs of infections. Metagenomics analysis confirmed the pathogenic species that were previously identified by species-specific PCR in 62% of samples, showing that metagenomics is less sensitive than species-specific PCR. On the other hand, metagenomics analysis identified pathogens in samples, which had been tested negative for multiple common microorganisms and showed histological signs of infection. This highlights the ability of this assay to screen for unknown pathogens and detect multi-microbial infections which is not possible by histomorphology and species-specific PCR alone

    Table_1_Unbiased screen for pathogens in human paraffin-embedded tissue samples by whole genome sequencing and metagenomics.xlsx

    No full text
    Identification of bacterial pathogens in formalin fixed, paraffin embedded (FFPE) tissue samples is limited to targeted and resource-intensive methods such as sequential PCR analyses. To enable unbiased screening for pathogens in FFPE tissue samples, we established a whole genome sequencing (WGS) method that combines shotgun sequencing and metagenomics for taxonomic identification of bacterial pathogens after subtraction of human genomic reads. To validate the assay, we analyzed more than 100 samples of known composition as well as FFPE lung autopsy tissues with and without histological signs of infections. Metagenomics analysis confirmed the pathogenic species that were previously identified by species-specific PCR in 62% of samples, showing that metagenomics is less sensitive than species-specific PCR. On the other hand, metagenomics analysis identified pathogens in samples, which had been tested negative for multiple common microorganisms and showed histological signs of infection. This highlights the ability of this assay to screen for unknown pathogens and detect multi-microbial infections which is not possible by histomorphology and species-specific PCR alone.</p

    DataSheet_1_Unbiased screen for pathogens in human paraffin-embedded tissue samples by whole genome sequencing and metagenomics.pdf

    No full text
    Identification of bacterial pathogens in formalin fixed, paraffin embedded (FFPE) tissue samples is limited to targeted and resource-intensive methods such as sequential PCR analyses. To enable unbiased screening for pathogens in FFPE tissue samples, we established a whole genome sequencing (WGS) method that combines shotgun sequencing and metagenomics for taxonomic identification of bacterial pathogens after subtraction of human genomic reads. To validate the assay, we analyzed more than 100 samples of known composition as well as FFPE lung autopsy tissues with and without histological signs of infections. Metagenomics analysis confirmed the pathogenic species that were previously identified by species-specific PCR in 62% of samples, showing that metagenomics is less sensitive than species-specific PCR. On the other hand, metagenomics analysis identified pathogens in samples, which had been tested negative for multiple common microorganisms and showed histological signs of infection. This highlights the ability of this assay to screen for unknown pathogens and detect multi-microbial infections which is not possible by histomorphology and species-specific PCR alone.</p

    Fibroblast activation protein-targeted-4-1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer

    No full text
    Background The costimulatory receptor 4-1BB (CD137, TNFRSF9) plays an important role in sustaining effective T cell immune responses and is investigated as target for cancer therapy. Systemic 4-1BB directed therapies elicit toxicity or low efficacy, which significantly hampered advancement of 4-1BB-based immunotherapy. Therefore, targeted delivery of 4-1BB agonist to the tumor side is needed for eliciting antitumor efficacy while avoiding systemic toxicity. Methods We analyzed the immunostimulatory properties of a fibroblast activation protein (FAP)-targeted 4-1BB agonist (FAP-4-1BBL) by assessing tumor-infiltrating lymphocytes' (TIL) activity from patients with non-small cell lung cancer and epithelial ovarian cancer. Results Combination treatment with FAP-4-1BBL and T cell receptor stimulation by either anti-CD3 or T cell bispecific antibodies significantly enhanced TIL activation and effector functions, including T cell proliferation, secretion of proinflammatory cytokines and cytotoxicity. Notably, costimulation with FAP-4-1BBL led to de novo secretion of interleukin (IL)-13. This was associated with cytokine-mediated tumor cell apoptosis, which was partially dependent on IL-13 alpha 1/2 receptors and STAT6 phosphorylation. Conclusions Our study provides mechanistic insights into T cell stimulation induced by FAP-4-1BBL in primary human tumors and supports the investigation of FAP-4-1BBL compound in early clinical trials
    corecore