267 research outputs found

    wDBTF: an integrated database resource for studying wheat transcription factor families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcription factors (TFs) regulate gene expression by interacting with promoters of their target genes and are classified into families based on their DNA-binding domains. Genes coding for TFs have been identified in the sequences of model plant genomes. The rice (<it>Oryza sativa </it>spp. <it>japonica</it>) genome contains 2,384 TF gene models, which represent the mRNA transcript of a locus, classed into 63 families.</p> <p>Results</p> <p>We have created an extensive list of wheat (<it>Triticum aestivum </it>L) TF sequences based on sequence homology with rice TFs identified and classified in the Database of Rice Transcription Factors (DRTF). We have identified 7,112 wheat sequences (contigs and singletons) from a dataset of 1,033,960 expressed sequence tag and mRNA (ET) sequences available. This number is about three times the number of TFs in rice so proportionally is very similar if allowance is made for the hexaploidy of wheat. Of these sequences 3,820 encode gene products with a DNA-binding domain and thus were confirmed as potential regulators. These 3,820 sequences were classified into 40 families and 84 subfamilies and some members defined orphan families. The results were compiled in the Database of Wheat Transcription Factor (wDBTF), an inventory available on the web <url>http://wwwappli.nantes.inra.fr:8180/wDBFT/</url>. For each accession, a link to its library source and its Affymetrix identification number is provided. The positions of Pfam (protein family database) motifs were given when known.</p> <p>Conclusions</p> <p>wDBTF collates 3,820 wheat TF sequences validated by the presence of a DNA-binding domain out of 7,112 potential TF sequences identified from publicly available gene expression data. We also incorporated <it>in silico </it>expression data on these TFs into the database. Thus this database provides a major resource for systematic studies of TF families and their expression in wheat as illustrated here in a study of DOF family members expressed during seed development.</p

    Genome sequence alterations detected upon passage of Burkholderia mallei ATCC 23344 in culture and in mammalian hosts

    Get PDF
    BACKGROUND: More than 12,000 simple sequence repeats (SSRs) have been identified in the genome of Burkholderia mallei ATCC 23344. As a demonstrated mechanism of phase variation in other pathogenic bacteria, these may function as mutable loci leading to altered protein expression or structure variation. To determine if such alterations are occurring in vivo, the genomes of various single-colony passaged B. mallei ATCC 23344 isolates, one from each source, were sequenced from culture, a mouse, a horse, and two isolates from a single human patient, and the sequence compared to the published B. mallei ATCC 23344 genome sequence. RESULTS: Forty-nine insertions and deletions (indels) were detected at SSRs in the five passaged strains, a majority of which (67.3%) were located within noncoding areas, suggesting that such regions are more tolerant of sequence alterations. Expression profiling of the two human passaged isolates compared to the strain before passage revealed alterations in the mRNA levels of multiple genes when grown in culture. CONCLUSION: These data support the notion that genome variability upon passage is a feature of B. mallei ATCC23344, and that within a host B. mallei generates a diverse population of clones that accumulate genome sequence variation at SSR and other loci

    New insights into the origin of the B genome of hexaploid wheat: Evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies suggested that the diploid ancestor of the B genome of tetraploid and hexaploid wheat species belongs to the <it>Sitopsis </it>section, having <it>Aegilops speltoides </it>(SS, 2n = 14) as the closest identified relative. However molecular relationships based on genomic sequence comparison, including both coding and non-coding DNA, have never been investigated. In an attempt to clarify these relationships, we compared, in this study, sequences of the Storage Protein Activator (SPA) locus region of the S genome of <it>Ae. speltoides </it>(2n = 14) to that of the A, B and D genomes co-resident in the hexaploid wheat species (<it>Triticum aestivum, AABBDD</it>, 2n = 42).</p> <p>Results</p> <p>Four BAC clones, spanning the SPA locus of respectively the A, B, D and S genomes, were isolated and sequenced. Orthologous genomic regions were identified as delimited by shared non-transposable elements and non-coding sequences surrounding the SPA gene and correspond to 35 268, 22 739, 43 397 and 53 919 bp for the A, B, D and S genomes, respectively. Sequence length discrepancies within and outside the SPA orthologous regions are the result of non-shared transposable elements (TE) insertions, all of which inserted after the progenitors of the four genomes divergence.</p> <p>Conclusion</p> <p>On the basis of conserved sequence length as well as identity of the shared non-TE regions and the SPA coding sequence, <it>Ae speltoides </it>appears to be more evolutionary related to the B genome of <it>T. aestivum </it>than the A and D genomes. However, the differential insertions of TEs, none of which are conserved between the two genomes led to the conclusion that the S genome of <it>Ae. speltoides </it>has diverged very early from the progenitor of the B genome which remains to be identified.</p

    History of Galaxy Interactions and their Impact on Star Formation over the Last 7 Gyr from GEMS

    Get PDF
    We perform a comprehensive estimate of the frequency of galaxy mergers and their impact on star formation over z~0.24--0.80 (lookback time T_b~3--7 Gyr) using 3698 (M*>=1e9 Msun) galaxies with GEMS HST, COMBO-17, and Spitzer data. Our results are: (1) Among 790 high mass (M*>=2.5e10 Msun) galaxies, the visually-based merger fraction over z~0.24--0.80, ranges from 9%+-5% to 8%+-2%. Lower limits on the major and minor merger fractions over this interval range from 1.1% to 3.5%, and 3.6% to 7.5%, respectively. This is the first approximate empirical estimate of the frequency of minor mergers at z<1. For a visibility timescale of ~0.5 Gyr, it follows that over T_b~3--7 Gyr, ~68% of high mass systems have undergone a merger of mass ratio >1/10, with ~16%, 45%, and 7% of these corresponding respectively to major, minor, and ambiguous `major or minor' mergers. The mean merger rate is a few x 1e-4 Gyr-1 Mpc-3. (2) We compare the empirical merger fraction and rate for high mass galaxies to a suite of Lambda CDM-based models: halo occupation distribution models, semi-analytic models, and hydrodynamic SPH simulations. We find qualitative agreement between observations and models such that the (major+minor) merger fraction or rate from different models bracket the observations, and show a factor of five dispersion. Near-future improvements can now start to rule out certain merger scenarios. (3) Among ~3698 M*>=1e9 Msun galaxies, we find that the mean SFR of visibly merging systems is only modestly enhanced compared to non-interacting galaxies over z~0.24--0.80. Visibly merging systems only account for less than 30% of the cosmic SFR density over T_b~3--7 Gyr. This suggests that the behavior of the cosmic SFR density over the last 7 Gyr is predominantly shaped by non-interacting galaxies.Comment: Accepted for Publication in the Astrophysical Journal. 17 pages of text, 21 figures, 3 tables. Uses emulateapj5.st

    Characterization of Clinically-Attenuated Burkholderia mallei by Whole Genome Sequencing: Candidate Strain for Exclusion from Select Agent Lists

    Get PDF
    is an understudied biothreat agent responsible for glanders which can be lethal in humans and animals. Research with this pathogen has been hampered in part by constraints of Select Agent regulations for safety reasons. Whole genomic sequencing (WGS) is an apt approach to characterize newly discovered or poorly understood microbial pathogens. genome. Therefore, the strain by itself is unlikely to revert naturally to its virulent phenotype. There were other genes present in one strain and not the other and vice-versa. was both avirulent in the natural host ponies, and did not possess T3SS associated genes may be fortuitous to advance biodefense research. The deleted virulence-essential T3SS is not likely to be re-acquired naturally. These findings may provide a basis for exclusion of SAVP1 from the Select Agent regulation or at least discussion of what else would be required for exclusion. This exclusion could accelerate research by investigators not possessing BSL-3 facilities and facilitate the production of reagents such as antibodies without the restraints of Select Agent regulation

    Observatoire Scientifique en Appui à la GEstion de la Santé sur un territoire (OSAGE-S)

    Get PDF
    Dans le contexte « environnement-santé », l’équipe interdisciplinaire (biologistes, médecins, épidémiologistes, modélisateurs, écologues, géographes, informaticiens) qui travaille sur la dynamique de maladies infectieuses dans le Sud-Est asiatique, propose de mettre en commun la connaissance qu’elle a des agents biologiques pathogènes et des processus qui interviennent dans les milieux et les sociétés et de partager expériences de terrain, de laboratoire, clinique pour aborder les questions de recherche, de suivi des maladies et de gestion de la santé. Pour ce faire, l’idée d’une plateforme intégrative a été avancée et nous a permis de décliner la proposition de mise en œuvre d’un Observatoire Scientifique en Appui à la GEstion de la Santé sur un territoire (OSAGE-S). Les prémices de ce travail sont d’une part d’ordre générique et épistémologique : ils explicitent formellement la formule « environnement-santé » pour y positionner le pathosystème, l’environnement et l’observatoire ; d’autre part d’ordre opérationnel par explicitation du concept d’observatoire en appui à la gestion de la Santé. Par la suite nous illustrerons nos propos autour d’OSAGE-S, à partir d’une étude de cas, la maladie du Chikungunya en Indonésie.Within the “Health and Environment” framework, a group of scientists in disciplinary fields as diverse as biology, medical sciences, modelling, ecology, geography, computer sciences, are collaborating to study the dynamics of infectious diseases in Southeast Asia. In this paper they propose to pool their knowledge on biological pathogens, environment and societies and to share their field, laboratory and clinical expertise to address questions on research, disease monitoring and health management. An integrative platform has been suggested and organised in order to implement a Scientific Observatory (OSAGE-S), dedicated to supporting Health Management in a Territory. The first part of this work addresses generic and epistemological questions, formally explicits the formula “Health and Environment” in order to relate it to concepts such as « pathological system », « environment » and « observatory » ; the second part relates to further operational issues for the observatory concept dedicated to the support of Health management. Thereafter we illustrate our proposition with a case study, the Chikungunya disease in Indonesia

    High level of conservation between genes coding for the GAMYB transcription factor in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) collections

    Get PDF
    The transcription factor GAMYB is involved in gibberellin signalling in cereal aleurone cells and in plant developmental processes. Nucleotide diversity of HvGAMYB and TaGAMYB was investigated in 155 barley (Hordeum vulgare) and 42 wheat (Triticum aestivum) accessions, respectively. Polymorphisms defined 18 haplotypes in the barley collection and 1, 7 and 3 haplotypes for the A, B, and D genomes of wheat, respectively. We found that (1) Hv- and TaGAMYB genes have identical structures. (2) Both genes show a high level of nucleotide identity (>95%) in the coding sequences and the distribution of polymorphisms is similar in both collections. At the protein level the functional domain is identical in both species. (3) GAMYB genes map to a syntenic position on chromosome 3. GAMYB genes are different in both collections with respect to the Tajima D statistic and linkage disequilibrium (LD). A moderate level of LD was observed in the barley collection. In wheat, LD is absolute between polymorphic sites, mostly located in the first intron, while it decays within the gene. Differences in Tajima D values might be due to a lower selection pressure on HvGAMYB, compared to its wheat orthologue. Altogether our results provide evidence that there have been only few evolutionary changes in Hv- and TaGAMYB. This confirms the close relationship between these species and also highlights the functional importance of this transcription factor
    corecore