90 research outputs found

    Colonisation with ESBL-producing and carbapenemase-producing Enterobacteriaceae, vancomycin-resistant enterococci, and meticillin-resistant Staphylococcus aureus in a long-term care facility over one year.

    Get PDF
    BACKGROUND: This study examined colonisation with and characteristics of antimicrobial-resistant organisms among residents of a long-term care facility (LTCF) over one year, including strain persistence and molecular diversity among isolates of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. METHODS: Sixty-four residents of a LTCF were recruited (51 at baseline, 13 during the year). Data on dependency levels, hospitalisations, and antimicrobial prescribing were collected. Nasal and rectal swabs and catheter urine specimens were examined quarterly, using chromogenic agars, for ESBL-producing Enterobacteriaceae, carbapenemase-producing Enterobacteriaceae (CPE), vancomycin-resistant enterococci (VRE), and meticillin-resistant S. aureus (MRSA). All ESBL-producing E. coli (ESBL-EC) were characterised by pulsed-field gel electrophoresis (PFGE) and PCR to assess for sequence type (ST) ST131, its resistance-associated H30 and H30-Rx subclones, and blaCTX-M, blaTEM, blaSHV, and blaOXA-1. RESULTS: The overall number of residents colonised, by organism, was as follows: ESBL-EC, 35 (55%); MRSA, 17 (27%); ESBL-producing K. pneumoniae (ESBL-KP), 5 (8%); VRE, 2 (3%) and CPE, 0 (0%). All 98 ESBL-EC isolates were H30-Rx ST131, with bla CTX-M-group 1. By PFGE, a group of 91 ESBL-EC (from 33 participants) had ≥85% similar profiles and resembled UK epidemic strain A/ international pulsotype PFGE812. Sequential ESBL-EC from individual residents were closely related. Six ESBL-KP isolates, from five participants, had bla CTX-M-group 1 and by PFGE were closely related. Colonisation with ESBL and MRSA was associated with location within the LTCF and previous exposure to antimicrobials. CONCLUSIONS: Among LTCF residents, colonisation with ESBL-EC and MRSA was common. All ESBL-EC were H30-Rx ST131, consistent with clonal dissemination

    Molecular epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli

    Get PDF
    ABSTRACT Objectives: E. coli O25b-ST131 has disseminated worldwide in hospitals and the community. The objective of this study was to determine the extent to which E. coli O25b-ST131 accounts for extended-spectrum beta-lactamase (ESBL)-producing E. coli from clinical samples from all sources in this region. Methods: Between January and June 2010 ESBL-producing E. coli were collected from 94 routine samples including 47 from residents of 25 nursing homes, 15 categorized as hospital acquired and 32 others. PCR was performed for detection of bla CTX-M , bla OXA-1 , bla TEM , bla SHV and for the identification of members of the E. coli O25b:ST131 clonal group. PFGE was carried out using XbaI in accordance with PulseNet protocols. Results: The majority (97%) of isolates harbored a bla CTX-M gene. E. coli O25b-ST131 accounted for 87% of all ESBLproducing E. coli and for 96% of isolates from nursing home residents. Sonuç: E. coli O25b-ST131 klonal grubu bakımevi kaynaklı olanlarda daha belirgin olmak üzere toplanan ESBL üreten E. coli suşları arasında baskındı. Conclusion Anahtar kelimeler: Escherichia coli, O25b-ST131, Direnç, Sağlık hizmeti, Bakımevi Ludden C

    Within-host evolution of Enterococcus faecium during longitudinal carriage and transition to bloodstream infection in immunocompromised patients.

    Get PDF
    BACKGROUND: Enterococcus faecium is a leading cause of hospital-acquired infection, particularly in the immunocompromised. Here, we use whole genome sequencing of E. faecium to study within-host evolution and the transition from gut carriage to invasive disease. METHODS: We isolated and sequenced 180 E. faecium from four immunocompromised patients who developed bloodstream infection during longitudinal surveillance of E. faecium in stool and their immediate environment. RESULTS: A phylogenetic tree based on single nucleotide polymorphisms (SNPs) in the core genome of the 180 isolates demonstrated several distinct clones. This was highly concordant with the population structure inferred by Bayesian methods, which contained four main BAPS (Bayesian Analysis of Population Structure) groups. The majority of isolates from each patient resided in a single group, but all four patients also carried minority populations in stool from multiple phylogenetic groups. Bloodstream isolates from each case belonged to a single BAPS group, which differed in all four patients. Analysis of 87 isolates (56 from blood) belonging to a single BAPS group that were cultured from the same patient over 54 days identified 30 SNPs in the core genome (nine intergenic, 13 non-synonymous, eight synonymous), and 250 accessory genes that were variably present. Comparison of these genetic variants in blood isolates versus those from stool or environment did not identify any variants associated with bloodstream infection. The substitution rate for these isolates was estimated to be 128 (95% confidence interval 79.82 181.77) mutations per genome per year, more than ten times higher than previous estimates for E. faecium. Within-patient variation in vancomycin resistance associated with vanA was common and could be explained by plasmid loss, or less often by transposon loss. CONCLUSIONS: These findings demonstrate the diversity of E. faecium carriage by individual patients and significant within-host diversity of E. faecium, but do not provide evidence for adaptive genetic variation associated with invasion

    Detection of vancomycin-resistant Enterococcus faecium hospital-adapted lineages in municipal wastewater treatment plants indicates widespread distribution and release into the environment.

    Get PDF
    Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of healthcare-associated infection. Reservoirs of VREfm are largely assumed to be nosocomial although there is a paucity of data on alternative sources. Here, we describe an integrated epidemiological and genomic analysis of E. faecium associated with bloodstream infection and isolated from wastewater. Treated and untreated wastewater from 20 municipal treatment plants in the East of England, United Kingdom was obtained and cultured to isolate E. faecium, ampicillin-resistant E. faecium (AREfm), and VREfm. VREfm was isolated from all 20 treatment plants and was released into the environment by 17/20 plants, the exceptions using terminal ultraviolet light disinfection. Median log10 counts of AREfm and VREfm in untreated wastewater from 10 plants in direct receipt of hospital sewage were significantly higher than 10 plants that were not. We sequenced and compared the genomes of 423 isolates from wastewater with 187 isolates associated with bloodstream infection at five hospitals in the East of England. Among 481 E. faecium isolates belonging to the hospital-adapted clade, we observed genetic intermixing between wastewater and bloodstream infection, with highly related isolates shared between a major teaching hospital in the East of England and 9/20 plants. We detected 28 antibiotic resistance genes in the hospital-adapted clade, of which 23 were represented in bloodstream, hospital sewage, and municipal wastewater isolates. We conclude that our findings are consistent with widespread distribution of hospital-adapted VREfm beyond acute healthcare settings with extensive release of VREfm into the environment in the East of England

    A One Health Study of the Genetic Relatedness of Klebsiella pneumoniae and Their Mobile Elements in the East of England.

    Get PDF
    BACKGROUND: Klebsiella pneumoniae is a human, animal, and environmental commensal and a leading cause of nosocomial infections, which are often caused by multiresistant strains. We evaluate putative sources of K. pneumoniae that are carried by and infect hospital patients. METHODS: We conducted a 6-month survey on 2 hematology wards at Addenbrooke's Hospital, Cambridge, United Kingdom, in 2015 to isolate K. pneumoniae from stool, blood, and the environment. We conducted cross-sectional surveys of K. pneumoniae from 29 livestock farms, 97 meat products, the hospital sewer, and 20 municipal wastewater treatment plants in the East of England between 2014 and 2015. Isolates were sequenced and their genomes compared. RESULTS: Klebsiella pneumoniae was isolated from stool of 17/149 (11%) patients and 18/922 swabs of their environment, together with 1 bloodstream infection during the study and 4 others over a 24-month period. Each patient carried 1 or more lineages that was unique to them, but 2 broad environmental contamination events and patient-environment transmission were identified. Klebsiella pneumoniae was isolated from cattle, poultry, hospital sewage, and 12/20 wastewater treatment plants. There was low genetic relatedness between isolates from patients/their hospital environment vs isolates from elsewhere. Identical genes encoding cephalosporin resistance were carried by isolates from humans/environment and elsewhere but were carried on different plasmids. CONCLUSION: We identified no patient-to-patient transmission and no evidence for livestock as a source of K. pneumoniae infecting humans. However, our findings reaffirm the importance of the hospital environment as a source of K. pneumoniae associated with serious human infection
    • …
    corecore