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ABSTRACT The incidence of infections caused by extraintestinal Escherichia coli (Ex-
PEC) is rising globally, which is a major public health concern. ExPEC strains that are
resistant to antimicrobials have been associated with excess mortality, prolonged
hospital stays, and higher health care costs. E. coli sequence type 131 (ST131) is a
major ExPEC clonal group worldwide, with variable plasmid composition, and has an
array of genes enabling antimicrobial resistance (AMR). ST131 isolates frequently en-
code the AMR genes blaCTX-M-14, blaCTX-M-15, and blaCTX-M-27, which are often rear-
ranged, amplified, and translocated by mobile genetic elements (MGEs). Short DNA
reads do not fully resolve the architecture of repetitive elements on plasmids to al-
low MGE structures encoding blaCTX-M genes to be fully determined. Here, we per-
formed long-read sequencing to decipher the genome structures of six E. coli ST131
isolates from six patients. Most long-read assemblies generated entire chromosomes
and plasmids as single contigs, in contrast to more fragmented assemblies created
with short reads alone. The long-read assemblies highlighted diverse accessory ge-
nomes with blaCTX-M-15, blaCTX-M-14, and blaCTX-M-27 genes identified in three, one,
and one isolates, respectively. One sample had no blaCTX-M gene. Two samples had
chromosomal blaCTX-M-14 and blaCTX-M-15 genes, and the latter was at three distinct
locations, likely transposed by the adjacent MGEs: ISEcp1, IS903B, and Tn2. This study
showed that AMR genes exist in multiple different chromosomal and plasmid con-
texts, even between closely related isolates within a clonal group such as E. coli
ST131.

IMPORTANCE Drug-resistant bacteria are a major cause of illness worldwide, and a
specific subtype called Escherichia coli ST131 causes a significant number of these in-
fections. ST131 bacteria become resistant to treatments by modifying their DNA and
by transferring genes among one another via large packages of genes called plas-
mids, like a game of pass-the-parcel. Tackling infections more effectively requires a
better understanding of what plasmids are being exchanged and their exact con-
tents. To achieve this, we applied new high-resolution DNA sequencing technology
to six ST131 samples from infected patients and compared the output to that of an
existing approach. A combination of methods shows that drug resistance genes on
plasmids are highly mobile because they can jump into ST131’s chromosomes. We
found that the plasmids are very elastic and undergo extensive rearrangements
even in closely related samples. This application of DNA sequencing technologies il-
lustrates at a new level the highly dynamic nature of ST131 genomes.
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Reported cases of bloodstream and urinary tract infections caused by extraintestinal
pathogenic Escherichia coli (ExPEC) are increasing globally at an alarming rate (1).

As a key source of ExPEC isolates worldwide, E. coli sequence type 131 (ST131) is
regarded as a serious threat to public health, given its high level of antimicrobial
resistance (AMR), as well as the broad spectrum of infections it causes in community
and hospital settings (2, 3).

E. coli ST131 is virulent (4) and has an expansive range of virulence factors (5, 6),
especially those linked to uropathogenic E. coli (UPEC) (3, 7, 8). AMR and virulence
genes allow ST131 to adapt to drug selection pressure and to survive in extraintestinal
niches and are often encoded on mobile genetic elements (MGEs) (9), which means that
the exact set of virulence and AMR genes in a single ST131 isolate may vary (8, 10).
ST131 encodes a range of extended-spectrum �-lactamases (ESBLs) that hydrolyze
third-line drugs, including cephalosporins, the most common of which is cefotaximase
blaCTX-M-15. Within ST131, clade C2 has more AMR genes than other clades and is
typically blaCTX-M-15 positive, differentiating it from clade C1, which can be blaCTX-M-14

or blaCTX-M-27 positive (3, 8).
Most ST131 AMR genes are reported to be carried on plasmids, circular self-

replicating double-stranded DNA molecules that constitute part of the bacterial acces-
sory genome (11–13). Plasmids can reduce bacterial cell fitness, but a number of
postsegregation killing and stable plasmid inheritance mechanisms allow the stable
maintenance of IncF plasmids in ST131 (14–16). The chromosomal integration of
plasmid genes is most commonly facilitated by transposons, which can ensure the
acquisition and conservation of such elements if there is no subsequent local recom-
bination (17, 18).

Identifying plasmid conjugation, recombination, and transposition could have value
in tracking AMR genes associated with disease outbreaks and antibiotic treatment
failures. Plasmids may be classified using incompatibility (Inc), relaxase (MOB), and
mating pair formation system typing (19), but difficulties in plasmid genetic analysis
and reconstruction arise with short-read data due to rearrangements driven by recom-
bination, dense arrays of repetitive elements including transposable elements (TEs),
changes in gene copy numbers, and high sequence variation. Methods using short
reads alone may fail to detect genomic segments exchanged between plasmids and
the chromosome, limiting evaluation of the core and accessory genomes.

Whole-genome sequencing has provided a high resolution of the genomic epide-
miology of ST131 and plasmid-mediated AMR outbreaks (20). However, short reads
alone are insufficient to resolve plasmids that often have numerous small MGEs of
�1 kb or less in size, e.g., TEs and insertion sequences (ISs) (21). Complex transposable
units (TUs) consisting of multiple TEs or ISs can mobilize AMR genes by transposition,
and this can sometimes be followed by recombination within the TU between one of
the inverted repeats (IRs) flanking the TE and the IR of another local TE or an adjacent
homologous sequence, resulting in different TU structures, locations, and copy
numbers. At present, the exact resolution of complex structural rearrangements of
repetitive TUs containing AMR genes may be impossible with short reads (22).
Consequently, plasmid assembly is a challenge, requiring accurate long reads and
sufficient coverage to distinguish between independent plasmids with regions of
sequence identity (21, 23).

Long reads, such as those generated using Oxford Nanopore Technologies (ONT) or
Pacific Biosciences platforms, can provide a solution to this plasmid assembly problem
(24–26). Here, we sequenced six ST131 using the ONT GridION X5 platform. Using the
resulting high-coverage sequence data, we reconstructed and annotated the plasmids
and chromosomal regions carrying blaCTX-M genes, as well as their genetic context and
copy numbers.

RESULTS
Oxford Nanopore long-read quality control and filtering. High-molecular-weight

DNA from six E. coli ST131 isolates was sequenced using long Oxford Nanopore reads
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and short Illumina reads to assemble their genomes, allowing for plasmid reconstruc-
tion and resolution of AMR genes, MGEs, and associated rearrangements. The ONT
GridION X5 sequencing generated 8.9 Gbases in total across 1,406,087 reads (mean
length of 6.3 kb) (Table 1). The number of reads generated per hour, total yield of bases
over time, read length distribution, and read Q score distribution were examined (see
Fig. S2 at https://ndownloader.figshare.com/files/14983688). Half of the bases with Q
values of �7 were on reads of 18 kb or longer (Fig. S3). These metrics indicated
sufficient GridION data in terms of quantity and quality. Initial screening removed reads
with Q values of �7, leaving 1,142,067 reads with 8.2 Gbases with a mean Q score of
10.2 and a mean length of 7.2 kb (Table 1) for analysis. This included 81 reads longer
than 100 kb, including one of 155,312 bases. This corresponded to a 257-fold theoret-
ical coverage for six 5.3-Mb genomes.

The initial number of reads per library ranged from 127,118 to 510,253, and these
were filtered using a series of steps to ensure that the reads used for each of the six
assemblies had high quality. Bases were successfully called at an average of 97.9% of
reads (Table 2). Identifying the consensus demultiplexed, duplicate-free, and adapter-
free reads from Porechop v0.2.4 eliminated a further 2.9% of the base-called reads,
yielding 120,123 to 487,482 reads per library (Table 2).

Long-read genome assembly illuminates highly diverse accessory genomes. All
six genome assemblies produced chromosomes of 4.81 to 5.38 Mb, with differing
numbers of plasmids with lengths spanning 4 to 156 kb (see Fig. S4 at https://
ndownloader.figshare.com/files/14983688; Table 3). The numbers of contigs produced
by long-read assemblies of two samples (VREC0693, VRES0739) corresponded exactly to
the chromosome and plasmids. The others had either one (VREC1073, VRES1160,
VREC1013) or two (VREC1428) additional chromosomal contigs (Table S2).

Contigs were classified as chromosomal or plasmid derived using mlplasmids given
a probability threshold of 60% (22), with further screening for plasmid-related gene
content using the Multiple Antibiotic Resistance Annotator (MARA), the Comprehensive
Antibiotic Resistance Database (CARD), and PlasmidFinder (Table S2). The largest
plasmid was a 156.3-kb IncFIA plasmid in VREC1073, its sole plasmid. VREC1428 and
VRES1160 had 92.8- and 61.9-kb IncFIA plasmids, respectively, along with three small
Col plasmids each (Table 3). VREC0693 had a 132.0-kb IncFIB plasmid and an 88.8-kb

TABLE 1 Quality parameters indicate high-quality read libraries for the six ST131 samples
from GridION X5 sequence dataa

Parameter

Value for:

All reads Reads with a Q of >7

Total bases 8,908,946 8,193,921
Total reads 1,406,087 1,142,067
Mean length (bp) 6,336 7,175
Median length (bp) 2,273 2,897
Mean Q score 9.1 10.2
Median Q score 10.0 10.5
Reads of �100 kb 85 81
aA total of 264,020 low-quality reads (with a Q of �7) totaling 715,024,800 bases were excluded.

TABLE 2 Number of reads generated from GridION X5 sequencing data per library that passed filtering during base calling with Albacore
v2.0 and those that were adapter-free (using Porechop v0.2.4)a

Strain No. of initial reads (fast5) No. of base-called reads (fastq) No. of adapter-free reads (fastq) Avg length (bp)

VRES1160 358,829 351,636 345,033 7,037
VREC0693 208,478 204,904 194,413 8,982
VRES0739 163,349 160,693 155,900 9,171
VREC1013 510,253 497,646 487,482 6,657
VREC1073 313,627 304,218 298,658 7,256
VREC1428 127,118 124,539 120,123 9,301
aThe adapter-free reads totaling 1,601,609 were used for downstream analyses. A total of 80,045 reads were excluded during base calling or adapter trimming.

Resolving ST131 Genomes Using GridION Sequencing

May/June 2019 Volume 4 Issue 3 e00130-19 msphere.asm.org 3

https://ndownloader.figshare.com/files/14983688
https://ndownloader.figshare.com/files/14983688
https://ndownloader.figshare.com/files/14983688
https://msphere.asm.org


IncB plasmid; IncB plasmids have the same Rep domains as IncFII plasmids (27).
VREC3013 had one 89.9-kb IncFII plasmid. VRES0739 alone had no large plasmid, which
was verified with the short-read data.

By mapping the long reads to the optimal assemblies, the read coverage of each
chromosome and plasmid was estimated (see Table S2 at https://ndownloader.figshare
.com/files/14983688). Each chromosome had 126- to 310-fold median coverage, and
the median coverage levels of large plasmids ranged from 85- to 282-fold, except for
VREC1013’s IncFII plasmid, which had 1,015-fold coverage and a normalized depth of
3.3-fold. The normalized depth of plasmids compared to chromosomes suggested that
some cells in VREC1428 and VREC1073 may have lost their IncFIA plasmid, and the same
was true for VREC0693 and its IncFIB plasmid. However, the IncFIA plasmid in VRES1160
and the IncB plasmid in VREC0693 had higher than expected copy numbers (by 9%
after normalization), potentially indicating stable plasmid retention.

Across five assemblies in the Unicycler normal mode, the median insertion/deletion
(indel) error rates for short reads and hybrid assemblies were similar (0.21 and 0.28 per
100 kb, respectively) but were much higher for long-read assemblies (265.0 per 100 kb)
(Table S3). Likewise, the median mismatch error rates for short reads and hybrid
assemblies were comparable (4.25 and 2.28 per 100 kb, respectively), but the error rate
was much higher for long-read assemblies (332.8 per 100 kb) (Table S3). These rates
excluded VREC1073, for which some Quast metrics were zero values. Similarly, the
recovery of conserved BUSCO genes was far higher for hybrid assemblies (�99.5%)
than for long-read ones (�82.3%).

The dynamic locations and genomic contexts of blaCTX-M genes in long-read
assemblies. The optimized assemblies provided an improved view of the genomic
context of each blaCTX-M allele, whose effectiveness as a marker for ST131 clade
classification and origin (8) were explored in this study. The deeper resolution of
genome architecture revealed surprising differences in blaCTX-M gene context (Fig. 1;
see Table S2 at https://ndownloader.figshare.com/files/14983688), including the dis-
covery of chromosomal blaCTX-M genes in VREC0693 (three copies of blaCTX-M-15) and
VREC1073 (one copy of blaCTX-M-14). All blaCTX-M genes were complete (876 bp) with
adjacent ISEcp1 (1,658 bp with flanking IRs of 14 to 16 bp) and Tn2 (5.8-kb) elements;
ISEcp1 and Tn2 can transpose blaCTX-M and other ESBL genes (28, 29). The VRES0739
genome did not contain any region homologous to blaCTX-M, most likely because it had
lost an IncF plasmid, unlike the other isolates.

VRES1160, VREC0693, and VREC1013 all had blaCTX-M-15 genes linked to isoforms
of ISEcp1, IS26, and Tn2, implicating them in driving the transposition of the TU (Fig.
S5). Each was similar to the ST131 clade C2 ISEcp1-blaCTX-M-15-orf477Δ TU (8, 30) but
with distinct structural differences. VRES1160’s single blaCTX-M-15 gene was at bp
2296 on its IncFIA plasmid and was flanked by ISEcp1 to its 5= end and by Tn2
followed by IS26 at its 3= end, with another Tn2 5= of ISEcp1. VREC0693’s three
chromosomal blaCTX-M-15 genes were not tandem repeats (chromosomal locations
at positions 2781074 bp, 3696068 bp, and 3970927 bp), but each of these TUs were

TABLE 3 Total sizes of assemblies, chromosomes, and plasmids found in each strain based on their optimal whole-genome assemblies
using the GridION X5 long readsa

Strain Genome length (bp)

No. of contigs

N50 Chromosome size (Mb) No. of plasmids Plasmid size(s) (kb)Assembled Minimum possible

VRES1160 5,326,801 6 5 5,126,679 5.23 4 62, 16, 5, 4
VREC0693 5,260,741 3 3 5,039,909 5.04 2 132, 89
VRES0739 4,806,912 3 3 4,797,749 4.81 2 5, 4
VREC1013 5,223,433 3 2 3,699,451 5.14 1 90
VREC1073 5,539,158 3 2 5,286,804 5.38 1 156
VREC1428 5,236,419 7 5 4,924,536 5.13 4 92, 5, 5, 4
aEach assembly had seven or fewer contigs, and in three cases, no fewer contigs were possible, consistent with full genome assembly (for VREC0693,
VRES0739, and VREC1073). The optimal assembly with Unicycler used long reads alone (in bold mode), with the exception of VREC1013, for which a hybrid
combining short Illumina reads with long Oxford Nanopore reads was best, with minor manual screening (see supplemental results at
https://ndownloader.figshare.com/files/14983688).
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identical: all had ISEcp1 at the 5= ends and truncated Tn2’s at the 3= ends.
VREC1013’s sole blaCTX-M-15 gene was located at bp 13226 on its IncFII plasmid and
was flanked by a truncated ISEcp1 at its 5= end and Tn2 at its 3= end, with IS26
copies 5= and 3= of these segments.

VREC1428’s single blaCTX-M-27 gene was on its IncFIA plasmid at position 6018, and
VREC1073’s single chromosomal blaCTX-M-14 gene started at contig position 19746 (see
Fig. S5 at https://ndownloader.figshare.com/files/14983688). Both their blaCTX-M genes
were flanked by a truncated ISEcp1 at the 5= ends and a shortened IS903B at the 3= ends,
suggesting that ISEcp1 and IS903B may have facilitated the transposition of the TU from
the plasmid. Similar blaCTX-M gene transposition events have been observed in ST131
clade C1 (8).

Alignment of the plasmid-derived contigs of VRES1160 (IncFIA) to VREC1013 (IncFIB)
showed that the blaCTX-M-15-positive plasmids were much more similar (�83% identity)
than VREC1428’s blaCTX-M-27-positive IncFIA plasmid, which was more distinct (Fig. 2). In
addition, VREC1428’s plasmid had traI and traD genes, indicating conjugation machin-
ery (Table 4), as well as high homology to at least one published plasmid, unlike
VRES1160’s and VREC1013’s plasmids (see supplemental results at https://ndownloader
.figshare.com/files/14983688). This suggested that the VRES1160 and VREC1013 plas-
mids had homology corresponding well with blaCTX-M gene and subclade classification
and that they were structurally different from published plasmids due to recombina-
tion.

Phylogenetic context of analyzed isolates. A comparison of these six samples
with 119 published ST131 isolates (8, 31) as short-read assemblies scaffolded using
reference genome NCTC13441 showed that all clustered in ST131 clade C (Fig. S6).
There was sufficient resolution across 4,457 core genome single-nucleotide poly-
morphisms (SNPs) to confidently assign them to subclade C1 (n � 1) or C2 (n � 5)

FIG 1 The structure of contigs with blaCTX-M genes. Two of the ST131 blaCTX-M genes are on chromosomal contigs (VREC0693 and VREC1073). VRES1160
and VREC1013 have IncFIA and IncFII plasmids, respectively, both of which have blaCTX-M-15 genes. VREC1428 has an IncFIA plasmid with the blaCTX-M-27

gene. VRES0739 is not shown because it was blaCTX-M negative and had no large plasmid. The contigs were classified as chromosomal or plasmid derived
by mlplasmids so that the blaCTX-M genes and their genetic flanking context could be examined. Annotation was derived from GalileoAMR based on the
Multiple Antibiotic Resistance Annotator (MARA) and database. The blaCTX-M variants are labeled and circled in red (blaCTX-M-15), purple (blaCTX-M-14), or
green (blaCTX-M-27).
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(Fig. 3). VRES1160, VREC0693, VREC1013, VRES0739, and VREC1073 clustered with
C2, whereas the blaCTX-M-27-positive VREC1428 was in C1. VRES1160, VREC0693, and
VREC1013 all had IncF plasmids (IncFIA, IncFIB, IncFII) and blaCTX-M-15 genes, con-
sistent with C2 isolates, which are typically blaCTX-M-15 positive; 77% of the C2
isolates here (48 out of 62) were observed to be blaCTX-M-15 positive. However,
VREC1073 was in subclade C2 but had a blaCTX-M-14 gene, contradicting this pattern,
and was the sole blaCTX-M-14-positive C2 isolate found here. The core genomes of
VRES0739 and VREC0693 were identical, implying that VRES0739 has very recently
lost its (blaCTX-M-positive IncF) plasmid. The sole isolate clustering with C1 was
VREC1428, which had an IncFIA plasmid with a blaCTX-M-27 gene and so may belong
to the emerging subclade C1-M27, as evidenced by the presence of prophage-like
regions like M27PP1/2 (31).

DISCUSSION

Our study resolved the plasmid architecture of several recent E. coli ST131
isolates, allowing investigation of AMR gene location, copy number, and potential
transposon-driven rearrangements. This advance was facilitated by careful DNA
handling during extraction to produce large volumes of high-molecular-weight
DNA that was pure and free from contamination, which was avoided by performing
separate extraction steps to obtain small plasmids (32), overcoming a limitation for
MinION sequencing (21).

The long-read genome assemblies illuminated significant variations in plasmids,
MGEs, and blaCTX-M gene composition that were not captured by short reads. ST131 is
a globally pandemic E. coli clonal group (15) with diverse sources of transmission (25).
Phylogenetic comparison with published genomes (8, 31) showed that five out of six
isolates were from subclade C2, with one from C1. The emergence of clade C has been
associated with IncF plasmids, and subclade C2 has been associated with ISEcp1 and
Tn2 elements flanking blaCTX-M-15 genes (33, 34). Our long-read assemblies showed the
excision of the entire TU from the IncFIB plasmid and chromosomal integration at three
distinct locations for VREC0693 and, similarly, chromosomal translocation of the

FIG 2 Pairwise comparisons of the three blaCTX-M-positive plasmid-associated contigs show high sequence identity
for the two from subclade C2 (VREC1013 and VRES1160) relative to that of one from C1 (VREC1428, top). The BLAST
result was visualized with EasyFig v2.2.2 such that the blocks connecting the regions of the contigs represent
nucleotide homology: blue for homologous regions in the same direction, and yellow for inversions. Gaps or white
spaces denote unique loci or regions present in one contig but not in the other. Gene models are in green, with
the direction of transcription shown by arrows. Genes of interest are labeled above each arrow. The blaCTX-M-27 gene
(top) is in mauve, and the two blaCTX-M-15 genes (middle and bottom) are in red. The table at the bottom shows
the contig size, plasmid type, and number of genes per strain. The list and products of the annotated genes are
given in Table 5.
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blaCTX-M-14 gene from an IncFIA plasmid for VREC1073, mediated by ISEcp1 and IS903B
based on previous work (8). These transposition events were likely driven by recom-
bination at adjacent transposable elements. This highlights the value of long-read
sequencing to resolve the location of blaCTX-M genes and that chromosomal translo-
cations are not rare in ST131.

A high resolution of the AMR gene structure, context, and copy number is highly
predictive of AMR phenotypes (35) and could lead to new insights into AMR mecha-
nisms. However, the high indel and mismatch errors in long Oxford Nanopore reads (32,
36–38) limit the power to identify AMR isoforms that could permit genome-based
antimicrobial susceptibility testing (27, 39, 40). Here, the five ONT assemblies together
had an average of 447-fold higher indel and 48-fold higher mismatch error rates than
those for the corresponding Illumina reads, similar to previous work with MinION reads
(23), and this impacted gene identification. Consequently, short reads and assembly
polishing methods remain important for SNP identification and error detection until
long-read error rates can be reduced (41).

Our findings illustrate the diversity of AMR gene context even within recently
emerged clones such as ExPEC ST131. The detection of multiple instances of
chromosomally integrated ESBL genes using long reads here for blaCTX-M-15 in E. coli
has parallels elsewhere for blaOXA-181 in blaCTX-M-15-positive Klebsiella pneumoniae
(42) and so highlights chromosomal ESBL gene ISEcp1-mediated transposition as a
potential adaptive mechanism in Enterobacteriaceae. Further studies with larger
sample sizes are needed to identify the rates and mechanisms of these dynamic
changes.

TABLE 4 Genes in the plasmid contigs of VREC1013, VRES1160, and VREC1428a

Genes in plasmid contigs of indicated isolate

VREC1428 VREC1013 VRES1160

pemI xerD_1 bla_1
pemK ccdA tmrB
bla vapC_1 cat
nqrC vapC_2 bla_2
lolD kdgT_1 aacA4
agp kdgT_2 tetA_1
hemR ridA tetA_2
repB_1 yagE pinR
repB_2 ugpA sopB_1
mmuM cpdA sopB_2
rocC tnpA repE
ccdA yknY ccdB
ccdB tpd ccdA
sopB_1 xerD_2 pifC_1
sopB_2 dhfrI_1 pifC_2
klcA ant1_1 pifC_3
traD_1 folP repB_1
traD_2 srpC repB_2
traD_3 bla xerD
traD_4 xerD_3 chrA
traD_5 xerC folP
traD_6 dhfrI_2 mdtJ
traI_1 ant1_2 xerC
traI_2 umuC tetA_3
traI_3 lexA tetR
traI_4 klcA neo
traI_5 tnpR
traI_6
traI_7
finO
aCount numbers are indicated by an underline followed by the number of counts (e.g., _1). The blaCTX-M

(bla), traI, and traD genes are in bold. Only isolate VREC1428 had traI and traD genes, indicating conjugative
capacity. VREC0693, VRES0739, and VREC1073 contigs did not have tra genes.
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MATERIALS AND METHODS
Sample collection. Six ESBL-producing E. coli ST131 clinical strains were isolated in June to October

2015 from patients at Addenbrooke’s Hospital, Cambridge, United Kingdom, as part of a study on
antibiotic resistance (see Table S1 at https://ndownloader.figshare.com/files/14983688). Five samples
were from feces, and one was from blood. These were short-read libraries in a multiplex run on an
Illumina HiSeq 2500 platform and were processed as previously outlined (43).

FIG 3 The phylogenetic context of the six ST131 genomes (names in large bold font) shows that all except that of VREC1428 are in ST131 subclade C2 (red
inner ring, VRES1160, VREC1073, VRES0739, VREC0693, and VREC1013). VREC1428 clustered in subclade C1 (purple inner ring). No new isolate clustered in C0
(green inner ring), B (blue inner ring), or an intermediate cluster (gray inner ring). Clade classification was based on phylogenetic analysis (8) by including the
reference NCTC13441, 63 isolates from reference 8, and 56 isolates from reference 31 with associated classification and blaCTX-M allele data. VREC1073 and
VREC0693 had chromosomal blaCTX-M genes. The outer ring shows blaCTX-M-15 (red), blaCTX-M-14 (purple), and blaCTX-M-27 alleles (green). The phylogeny was built
with RAxML v8.2.11 using 4,457 SNPs from a core genome alignment generated with Roary v3.11.2 and was visualized with iTOL v4.3. Branch support was
performed by 100 bootstrap replicates, and the scale bar indicates the number of substitutions per site. This midpoint-rooted phylogeny includes reference
genome isolates EC958 and NCTC13441 (both in C2).
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High-molecular-weight DNA extraction. Frozen stocks of the six isolates were streaked onto LB
agar plates and grown overnight at 37°C. Single colonies were subcultured onto LB agar plates and
incubated overnight at 37°C. DNA was extracted using a Lucigen MasterPure complete DNA and RNA
purification kit. For each sample, a swab was used to sweep half a plate of pure colonies, which was
suspended in 1� phosphate buffer solution (PBS). Samples were processed according to the manufac-
turer’s instructions, with elution in 70 �l of nuclease-free water. Pipetting was minimized to reduce
shearing of the DNA prior to sequencing.

Oxford Nanopore library preparation and sequencing. DNA was quantified using a Quant-iT HS
(high-sensitivity) kit (Invitrogen). DNA purity was checked using a NanoDrop (Thermo Fisher), and
fragment size was confirmed by a Femto Pulse system (Nano Life Quest). The sequencing libraries were
prepared using 1 �g DNA per sample and ligation sequencing kit 1D SQK-LSK109 with the barcoding
extension kit EXP-NPB104 in accordance with the ONT protocols. The samples were combined using
equimolar pooling and loaded onto a single 9.4.1 MIN-106 flow cell and sequenced on the GridION X5
platform under standard conditions.

Illumina library preparation and sequencing. The short reads used in this study were created as
follows: bacterial genomic DNA was extracted using a QIAxtractor (Qiagen, Valencia, CA, USA) according
to the manufacturer’s instructions. Library preparation was conducted according to the Illumina protocol
and sequenced (96-plex) on an Illumina HiSeq 2500 platform (Illumina, San Diego, CA, USA) using 100-bp
paired-end reads.

Oxford Nanopore base calling and adapter trimming. The resulting fast5 read files (available at
https://www.ncbi.nlm.nih.gov/sra/PRJEB30511 under accession numbers ERR3284704 to ERR3284709)
were transferred to a separate Linux server 4.4.0 (Ubuntu 16.04.4) for analysis. Base calling was performed
during the GridION run using ONT Guppy v0.5.1, and the resulting fast5 files from the initial run were
converted to fastq format with Albacore v2.0 (ONT). The statistical data of the sequencing run was
processed with MinIONQC v1.3.5 (44) based on the default Q score cutoff of 7. Adapters and chimeric
reads were removed from fastq files using Porechop v0.2.4 (45) with demultiplex settings (see Fig. S1 at
https://ndownloader.figshare.com/files/14983688). Standard outputs were saved as log files and then
parsed. The quality of the final fastq files was assessed using FastQC v0.11.8 (https://www.bioinformatics
.babraham.ac.uk/projects/fastqc/) and MultiQC v1.4 (46).

Genome assembly and improvement. We assembled the genomes using the conservative, normal,
and bold modes of the long-read-only assembly pipeline in Unicycler v4.6. Previous work has suggested
that Unicycler outperforms alternatives (21) that struggle to resolve plasmids (36). This workflow included
the assembly polisher, Racon, which ran iteratively to minimize error rates of called bases (45). For
comparison, short read-only and hybrid assemblies were also created using Unicycler v4.6. Briefly, during
short-read-only assembly, Unicycler v4.6 employed SPAdes v3.12 to assemble short reads and then used
Pilon v1.22 to polish the assembly. In hybrid assemblies, Unicycler v4.6 used Miniasm to piece together
long reads first and applied SPAdes v3.12 to incorporate short reads and bridge gaps. Pilon was run 3
to 10 times for short-read assemblies and 5 to 10 times for hybrid ones, until no further changes were
required to achieve the most contiguous and complete genome assemblies. The average numbers of

TABLE 5 Protein products encoded by genes found in plasmids of strains VREC1013,
VRES1160, and VREC1428a

Gene Protein product

agp Glucose-1-phosphatase
ccDA Antitoxin (plasmid maintenance)
chrA Response regulator
finO Fertility inhibition protein
folP Dihydropteroate synthase
hemR Hemin TonB-dependent receptor
klcA Antirestriction protein
lolD Lipoprotein-releasing system ATP-binding
neo Aminoglycoside 3=-phosphotransferase
nqrC Na(�)-translocating NADH-quinone reductase
pemK mRNA interferase
pifC Transcriptional repressor protein
pinR Serine recombinase protein
repB Replication protein
repE Replication initiation protein
rocC Amino acid permease
sopB Inositol phosphate phosphatase
tetA Tetracycline resistance protein
tmrB Tunicamycin resistance protein
tnpR Transposon gamma-delta resolvase
traD Coupling protein
traI Multifunctional conjugation protein
xerC Tyrosine recombinase protein
xerD Tyrosine recombinase protein
aSee Fig. 2.
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changes by Pilon were 74.3, 100.2, and 125.3 for short-read assemblies and 234.5, 257.7, and 377.0 across
conservative, normal, and bold modes, respectively.

Genome assembly assessment and error rate quantification. The quality of resulting assemblies
was assessed using Quast 3.0 (47) according to the total assembly length, number of contigs, N50, GC
content, and degree of replicon circularization. Assembly graphs were visualized with Bandage (48). The
resulting contigs in each assembly were classified as chromosomal or plasmid using machine learning
algorithms implemented in mlplasmids (22). Genome completeness was examined using the numbers of
single-copy universal orthologous genes using BUSCO (Benchmarking Universal Single-Copy Orthologs)
v3 with the gammaproteobacteria_odb9 database (49).

Read depth estimation. The read depth of each replicon was estimated by aligning the short
Illumina reads and the long Oxford Nanopore reads to the completed genomes by use of Smalt v0.7.6
and BWA-MEM v0.7.17 (with the flag –x ont2d for ONT reads), respectively. SAMtools v1.7 was used to
process the SAM files to BAM format, remove duplicates, and identify the coverage at each base of each
assembly. The median value for each replicon was noted and was normalized using the median
chromosomal depth of the same assembly.

Genome annotation. The genomes were annotated using Prokka v1.13.3 (50). blaCTX-M alleles and
their contexts were detected using the Multiple Antibiotic Resistance Annotator (MARA) (51) and by
aligning the assemblies against the Comprehensive Antibiotic Resistance Database (CARD v3.0) to screen
for matches with 100% identification only. Information on the detected AMR features and MGEs are
retrieved from Galileo AMR (https://galileoamr.arcbio.com/mara/feature/list). Plasmid identification and
typing were carried out using PlasmidFinder v2.0 (52). The plasmid-derived contigs from the assembled
genomes were compared using BLAST v2.6.0 with a database of 10,892 complete plasmids (53). Their
homology and annotation were visualized using EasyFig v2.2.2 (54).

Phylogenetic analysis. To provide a phylogenetic context for these six isolates, the Illumina read
libraries of 63 published ST131 samples from references 8 and 56 from reference 31 were cleaned and
trimmed using Fastp v0.12.3 (55), as were the short-read libraries of the six isolates from this study. These
125 libraries were de novo assembled with Unicycler v4.6 using NCTC13441 as a reference and annotated
using Prokka. The 126 genomes were processed using Roary v3.11.2 (56) with a 95% BLAST v2.6.0 identity
threshold to create a core genome alignment containing 4,457 SNPs using MAFFT v7.310 (57) spanning
3,250,343 bases and 3,350 genes of the NCTC13441 chromosome (a length similar to that described
previously [20]). This core genome was used to construct a maximum likelihood phylogeny using RAxML
v8.2.11 with the general time-reversible (GTR) model with gamma rate heterogeneity (58). Clade
classification of the six isolates was based on a published ST131 phylogenetic analysis (8) with associated
classification and blaCTX-M allele data from references 8 and 31.

Ethical approval. The study protocol was approved by the National Research Ethics Service
(reference 14/EE/1123) and the Cambridge University Hospitals NHS Foundation Trust Research and
Development Department (reference A093285).

Data availability. Illumina reads were deposited under accession numbers ERR2138475,
ERR2138200, ERR2138591, ERR1878196, ERR2137889, and ERR1878359 in the European Nucleotide
Archive (ENA) under BioProjects PRJEB21499 and PRJEB19918. ONT reads were deposited under acces-
sion numbers ERR3284704, ERR328470, ERR3284706, ERR3284707, ERR3284708, and ERR3284709 (see
https://www.ebi.ac.uk/ena/data/view/PRJEB30511 in the ENA or https://www.ncbi.nlm.nih.gov/sra/
PRJEB30511 in the SRA under BioProject PRJEB30511; see also FigShare at https://doi.org/10.6084/m9
.figshare.7554293.v1). Unicycler assemblies were deposited at FigShare (https://doi.org/10.6084/m9
.figshare.7560458.v2).
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