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Summary A One Health genomic survey of K. pneumoniae demonstrated transmission between 

patients and their ward environmental transmission, but no evidence to implicate livestock as a 

source of K. pneumoniae or their mobile genetic elements encoding antibiotic resistance. 

 

ABSTRACT  

Klebsiella pneumoniae is a human, animal and environmental commensal and a leading cause of 

nosocomial infections, which are often caused by multi-resistant strains that are challenging to treat. 

We conducted a One Health evaluation of putative sources of K. pneumoniae that are carried by, 

and infect hospital patients. This combined data from a six-month study on two haematology wards 

at Addenbrooke’s Hospital, Cambridge, in 2015 to isolate K. pneumoniae from stool, blood and the 

environment, and a cross-sectional survey of K. pneumoniae from 29 livestock farms, 97 meat 

products, the hospital sewer and 20 municipal wastewater treatment plants in the East of England 

between 2014 and 2015. K. pneumoniae was isolated from stools of 17/149 (11%) patients and 

18/922 swabs of their environment, together with one patient bloodstream infection during the 

study and 4 others over a 24-month period. Each patient carried one or more lineages that was 

unique to them, but two broad environmental contamination events and patient-environmental 

transmission were identified.  K. pneumoniae was isolated from cattle and poultry, hospital sewage 

and 12/20 wastewater plants. There was low genetic relatedness between isolates from 

patients/their hospital environment versus isolates from elsewhere. Identical genes encoding 

cephalosporin resistance were carried by isolates from different reservoirs, but were carried on 

different plasmids by isolates from patients/their environment versus elsewhere. We identified no 

patient-to-patient transmission and no evidence for livestock as a source of K. pneumoniae infecting 

humans, but our findings reaffirm the importance of the hospital environment as a source of K. 

pneumoniae associated with serious human infection. 
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INTRODUCTION 

Klebsiella pneumoniae is a major cause of nosocomial infections worldwide, the public health 

importance of which has been amplified by the increasing prevalence of multidrug resistant K. 

pneumoniae carriage and infection [1-3]. Resistance can be attributed to the global dissemination of 

extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae and the subsequent emergence of 

isolates with resistance to the carbapenem drugs and colistin. Control of human K. pneumoniae 

infection requires an understanding of the potential sources from which infecting organisms are 

acquired. This is complex since K. pneumoniae can persist in a broad range of reservoirs including 

the hospital environment [4-7], retail meat   [8, 9], livestock [10, 11] and wastewater [12, 13].  

 

Attributing sources of K. pneumoniae that cause infection requires the sampling of multiple 

reservoirs in the same time and place, and comparing these using whole genome analyses. Previous 

genomic studies have largely focused on transmission in high-risk settings such as intensive care 

units. These have identified K. pneumoniae carriage as a significant risk factor for infection [14, 15]. 

Accurate interpretation of transmission also requires an understanding of whether specific 

reservoirs and individual samples contain more than one K. pneumoniae lineage. A previous study 

identified limited within-host diversity in 20% of patients based on sequencing of up to three K. 

pneumoniae colonies from 40 patients [15].  

 

Here, we explore the genetic relatedness of K. pneumoniae isolated from the same and different 

reservoirs within a defined geographic region through an investigation of isolates from a patient 

cohort, their hospital environment, livestock, municipal wastewater and hospital sewage in the same 

geographic region of England. 
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MATERIALS AND METHODS  

Patient recruitment and sampling 

A prospective longitudinal study was conducted in two adult hematology wards at the Cambridge 

University Hospital NHS Foundation Trust (CUH) between May and November 2015. Patients were 

enrolled after informed written consent, after which stool samples were requested on the day of 

admission, every week thereafter and at discharge and cultured for K. pneumoniae. Environmental 

sampling for K. pneumoniae was performed throughout the study, details of which are provided in 

Supplementary Material. All blood cultures from patients on the two study wards between May 

2014 and May 2016 were identified and stored isolates obtained. Wastewater was sampled from the 

main sewer of CUH on four spaced occasions between September 2014 and December 2015. A 

cross-sectional survey was conducted between June 2014 and January 2015 to isolate K. 

pneumoniae from raw and treated wastewater at 20 municipal wastewater treatment plants in the 

East of England. Ten plants were located downstream of acute hospitals and 10 did not directly 

receive hospital waste. A cross-sectional survey was conducted between August 2014 and April 2015 

to isolate K. pneumoniae from livestock at 29 farms in the East of England (10 cattle (5 beef/5 dairy), 

10 pig, and 9 poultry (4 chicken/5 turkey). Supplementary Material provide further details of the 

study design, sample collection and laboratory methods for bacterial culture, identification and 

antimicrobial susceptibility testing.  

 

Whole-genome sequence analysis   

Bacterial DNA was extracted using the QIAxtractor (QIAgen) and sequenced on an Illumina 

HiSeq2000 (Illumina, San Diego, CA, USA). de novo assembly of short read data was performed as 

previously described [16, 17], assemblies were annotated using Prokka [18] and a core genome 

alignment was produced by Roary. Further analysis was performed for ST307, ST268, ST6, ST34, 
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ST3010 and ST2585. Isolates belonging to these six STs were each mapped against a study isolate 

with the best N50 for that ST. Mapping was performed using SMALT 

(http://www.sanger.ac.uk/resources/software/smalt/) and recombination was removed using 

Gubbins [19]. SNPs were extracted using an in-house tool (www.github.com/sanger-pathogens/snp-

sites). Maximum Likelihood trees were created using RAxML with 100 bootstraps and a midpoint 

root. Phylogenetic trees and associated metadata were visualised using iTOL[20] and Figtree 

(www.tree.bio.ed.ac.uk/software/figtree/). Identification of multilocus sequence types (STs), 

antimicrobial resistance determinants, virulence factors and plasmids was performed. A detailed 

description of the rationale for selecting isolates for sequencing and genomic analyses are provided 

in Supplementary Material. 

 

RESULTS 

Isolation of K. pneumoniae from stool, blood and the environment of a hospital cohort 

174 of 338 patients (51%) admitted to the two study wards between May and November 2015 were 

recruited and agreed to provide stools for culture (Figure 1A). The 174 cases had a median stay of 19 

days (interquartile range (IQR) 9 to 29 days), and were admitted a median of once (IQR 1 to 2, total 

307 admissions).  Stool samples were actually obtained from 149/174 patients (376 stools, median 3 

(IQR 2-5) per case), with 101 patients providing two or more samples. K. pneumoniae was isolated 

from 23 stools from 17/149 (11%) patients, 3 of whom (2%) carried ESBL-producing K. pneumoniae, 

a similar rate to that reported previously [21]. 922 environmental swabs were taken from patient 

areas, medical equipment, and the wider environment over the 6-month study period. K. pneumoniae 

was isolated from 18 (2%) swabs from 7 different locations (3 single rooms/bathrooms during an 

initial point prevalence survey, and 3 single rooms/bathrooms plus a 2-bedded bay thereafter) each 

positive on one occasion. Six positive locations were in ward A and one was in ward B. This low rate 

of contamination is consistent with previous studies reporting 0-5% positivity during routine 
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surveillance [22, 23]. Bloodstream infection caused by K. pneumoniae occurred in 5 patients on the 

two study wards during a more extended 2-year period (May 2014 to May 2016), including one case 

during the 6-month study. Seven K. pneumoniae cultures from the 5 patients had been stored and were 

available for sequencing (Supplementary Table 1). 

 

Genomic analysis of healthcare-associated isolates 

We sequenced 122 K. pneumoniae colonies (termed isolates) picked from primary culture plates 

from 23 stools/17 participants (median 5 isolates per stool, range 1-15). These were assigned to 21 

different sequence types (STs) (Figure 1B and Supplementary Table 1). Most patients (15/17) carried 

a single ST, with the two remaining cases each carrying 3 different STs (Supplementary Table 1). No 

two patients carried the same ST, indicating an absence of patient-to-patient transmission. Pairwise 

analysis of single nucleotide polymorphisms (SNP) in the core genome of isolates from the same 

patient/same ST demonstrated a median (range) difference of 1 (0-30) SNPs for the 17 patients.  

 

We sequenced 24 isolates from 18 environmental swabs. These belonged to a more restricted 

population of 4 STs (Figure 1B and Supplementary Table 1). Integration of genetic and 

epidemiological data suggested two broad environmental contamination events. A cluster of 11 K. 

pneumoniae ST23 isolates were cultured from two adjacent single rooms and one more distant 

single room in Ward A, all positive on a single date in April 2014. Pairwise core genome SNP analysis 

demonstrated a median (range) difference of 2 (range 0-5) SNPs after removing two outliers (> 45 

SNPs different). A second cluster of 8 K. pneumoniae ST307 isolates were cultured from two adjacent 

single rooms in Ward A and 1 bedside in a 2-bedded bay in Ward B, all positive on a single date in 

Sept 2015. The 8 isolates were identical at the core genome level. In addition, K. pneumoniae ST268 

and ST3021 were each isolated once from different single rooms. The ST3021 isolate was cultured 
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from the same room and day as an ST23 isolate, suggesting a wider contamination event and/or 

inadequate cleaning.  

 

Comparison of isolates from stool and the environment showed that two STs (268 & 307) were 

identified from both sources (Figure 2A). ST268 was isolated from a single stool from a patient 

(D034) and their environment in August and October 2015, respectively. Patient D304 had 17 

admissions to the haematology day unit and 2 transfers to Ward A during the period between the 

positive stool and environment sample. The most closely related stool-environmental ST268 isolate 

pair had highly similar core genomes (1 SNP different), which is consistent with recent patient-

environment transmission. ST307 was isolated from stool in August 2015 from a patient (C029) in a 

single room on Ward B and 18 days later from the environment of two rooms in Ward A and one 

room in Ward B (a different room to the index case). The most closely related stool and 

environmental ST307 isolate pair were 64 core genome SNPs different (see Figure 3A for phylogeny), 

which is not consistent with recent patient-environment transmission. 

 

We sequenced 16 K. pneumoniae isolates from 7 blood cultures/5 patients (1 isolate from each of 

the archived collection for 6 cultures/4 patients before or after the 6-month study, and 10 primary 

plate colonies from the case that occurred during the study).  These belonged to five different STs, 

with one ST per patient. Four of the five STs were not identified in any other patient during the 6-

month study, including the ST isolated from the patient who was bacteremic in this period. The 

exception was ST307, isolated from a patient (B024) with a bloodstream infection on two time 

points in September and December 2014 (at least 5 months before the prospective study began). 

Blood culture isolates from September and December differed by 4 SNPs, indicating relapse or 

reinfection with the same strain. Comparison between these and the prospective study isolates 

showed that the earlier blood culture isolates were related to the ST307 patient C029 stool isolates 
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(13 SNPs, range 12-15) and less closely to the ST307 environmental isolates (54 SNPs, range 52-57) 

(Figure 3A).  This is indicative of either a persistent environmental reservoir of ST307 K. pneumoniae 

or on-going transmission between unsampled patients. Sequencing and pairwise core genome 

analysis of 10 colonies from a single blood culture from one patient (B022, ST6) demonstrated a 

median (range) difference of 1 (0-2) SNPs. This patient did not provide a stool sample.  

 

Isolation of K. pneumoniae from livestock, retail meat and sewage  

The number of sampling points at each farm was maximized by taking pooled samples containing up 

to 50 aliquots of freshly passed faecal material from each major area in a given farm (for example, a 

pen). Culture of 136 pooled fecal samples from 29 livestock farms (Figure 4A) demonstrated that 6 

(4%) samples from 4 (14%) farms (1 dairy cattle and 3 turkey) were positive for K. pneumoniae 

(Supplementary Table 1). Culture of 97 pre-packaged fresh meat products from 11 different 

countries purchased at 11 major Cambridge supermarkets were all negative for K. pneumoniae 

(Supplementary Table 2). Longitudinal sampling of sewage (4 samples over 16 months) at the study 

hospital (Figure 4A) resulted in K. pneumoniae being identified in 3/4 samples. A survey of 20 

municipal wastewater treatment plants (Figure 4A) led to the recovery of K. pneumoniae from 17/40 

water samples (11 untreated and 6 treated wastewater), taken from 12/20 treatment plants, with 

5/12 plants releasing K. pneumoniae into the environment. Multiple colonies were selected from 

each positive sample for sequencing. 

 

Genome-based comparison of K. pneumoniae from the hematology ward and elsewhere 

We sequenced 87 K. pneumoniae isolates from livestock (32 isolates), municipal wastewater 

treatment plants (28 isolates) and hospital sewage (27 isolates). From this we identified four STs for 

livestock isolates, 24 STs from municipal wastewater and 6 STs from hospital sewage (Figure 2A). For 
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the livestock isolates, 2 STs (ST1609 and ST661) were identified from a single cattle farm, and one ST 

(ST3010) was isolated from all 3 turkey farms together with one colony of its single locus variant 

(SLV) from one of these (ST2585). All isolates from three different turkey farms (including the SLV) 

were a median (range) of 12 core genome SNPs (range 0-17) different, suggesting linkage between 

farms. Of these, two farms were located ~24 miles apart and the third was ~82 miles and 66 miles 

from the two other farms, respectively. All three farms were owned by the same company, and it is 

possible that transmission may have occurred as a result, although the route of transmission is 

unknown. STs were compared between isolates from the patient cohort, their ward environment, 

livestock, municipal and hospital waste (Figure 2A). There was no overlap in STs from the different 

sources with two exceptions (ST661 from patient stool & livestock, and ST20 from patient stool & 

municipal wastewater). The two ST611 isolates differed by 2641 core genome SNPs, and the 6 ST20 

isolates differed by a median (range) of 849 (848-851) SNPs. This indicates that isolates from 

different sources that belonged to the same ST were not closely related.  

 

A maximum-likelihood phylogenetic tree of the 249 study isolates (hematology ward (n=162), 

livestock/sewage/wastewater (n=87)) was constructed based on 499,378 core gene SNPs (Figure 

2B). This demonstrated high genetic diversity and 3 distinct populations (208 KpI (K. pneumoniae), 

22 KpII  (K. quasipneumoniae) and 19 KpIII (K. variicola) isolates (Figure 2B), consistent with previous 

descriptions [1]. Each clade contained isolates from human stool and wastewater. Isolates from the 

hospital environment and blood were confined to KpI and KpIII, while isolates from cattle and 

turkeys resided in different clades (turkey in KpI, cattle in KpII).  

 

Antibiotic resistance in K. pneumoniae from the hematology ward and elsewhere 
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Phenotypic antibiotic susceptibility of the 249 isolates to 19 antibiotics is summarized in Figure 4B. 

Resistance to meropenem and ertapenem was detected for two isolates from hospital sewage, both 

of which contained blaKPC-2. No colistin resistance genes (MCR-1, MCR-1.2, MCR-2, MCR-3, MCR-4, 

MCR-5) were detected in any of the isolates. Colistin resistance in K. pneumoniae can also occur 

through modification of lipopolysaccharides that arise from mutations in the pmrA/pmrB and 

phoP/phoQ two-component regulatory systems. We identified the L96P mutation in phoQ 

associated previously with colistin resistance [24] in three isolates recovered from a single 

wastewater treatment plant (accession numbers:  ERR985164, ERR985165, ERR985166). This 

indicates the importance of wastewater treatment plants as a source of resistance variants.  

Almost half of all isolates had an ESBL phenotype (118/249, 47%). Nearly all ESBL K. pneumoniae 

(n=113) carried blaCTX-M-15, the remainder carrying blaCTX-M-1 (n=3), or blaKPC-2 and blaSHV-12 (n=2). 

Isolates positive for blaCTX-M-15 were distributed across 12 different STs and in all reservoirs tested, 

while blaCTX-M-1 and blaKPC-2 were reservoir specific and restricted to ST277 and ST258, respectively 

(Supplementary Table 1).  

 

Plasmid analysis for the 113 blaCTX-M-15 positive isolates was initially performed based on comparison 

between contigs containing the gene and the NCBI nucleotide database. This demonstrated close 

similarity to several reference plasmids, against which short read data for the 113 isolates were then 

mapped. All isolates from turkey farms contained a blaCTX-M-15 plasmid with high sequence similarity 

(ID >99%, coverage >99%) to pKpN01-CTX [25]. Wastewater isolates that belonged to ST902 

(municipal plant) and ST1436 (hospital sewage) showed high sequence match (ID >99%, coverage 

>98%) to pKPN3-307 Type A plasmid [26]. All ST268 isolates from stool and the ward environment 

mapped (ID >99%, coverage >99%) to the plasmid pCTXM15 (GenBank accession CP016925.1), 

consistent with these being associated with patient-environmental transmission. By contrast, whilst 

ST307 isolates from blood and stool mapped to IncFIB(K) pKPN3-307 Type B (GenBank: KY271405.1; 
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ID >97%, coverage >99%), ST307 isolates from the hospital environment were not positive for this 

plasmid and no plasmid reference was identified in the NCBI nucleotide database. This is consistent 

with these not being associated with patient-environment transmission. Long-read sequencing of 

one bloodstream and one environmental blaCTX-M-15 ST307 isolate showed that both contained an 

IncFIB(K) plasmid (GenBank: MH745929 and MH745930, respectively). The environmental plasmid 

only had 78% coverage (ID >99%) against the human plasmid, however this shared sequence 

included a 31533-bp antimicrobial resistance region containing the blaCTX-M-15 element (Figure 3B and 

Supplementary Table 3). Mapping of all ST307 blaCTX-M-15 isolates to these two plasmids showed that 

clinical isolates contained MH745929 and the environmental isolates contained MH745930 (Figure 

3A).  

 

All blaCTX-M-15 plasmids encoded a 13.4-kb region containing multiple antimicrobial resistance genes 

including blaCTX-M-15, blaTEM, strA, strB and sul2 (see Figure 3B and AMR_Cluster1 in Supplementary 

Table 4). In total, 88/113 blaCTX-M-15 positive isolates from humans, the hospital environment, 

livestock and wastewater had high coverage mapping (>99%) and sequence ID (>99%) to this cluster, 

which shared synteny with an antimicrobial resistance region found previously in other K. 

pneumoniae plasmids [26]. In addition, 17 isolates from the hospital sewer and humans shared a 7.2 

kb resistance cluster (see AMR_Cluster2 in Supplementary Table 3), containing blaCTX-M-15 and aph(3) 

(encoding  aminoglycoside resistance). 

 

Analysis of blaCTX-M-1 and blaKPC-2 positive isolates demonstrated that the three blaCTX-M-1 isolates 

(ST277, from wastewater) mapped with high similarity to the p369 plasmid (GenBank accession 

number KT779550; ID >99%, coverage >99%) [27], and the two carbapenemase-producing K. 

pneumoniae (blaKPC-2) isolates (ST258) from hospital sewage showed >99% mapping coverage and 

>99% sequence ID to the whole sequence of KPC reference plasmid pKpQIL-UK [28]. 
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Virulence genes in K. pneumoniae from different reservoirs  

The diversity of loci encoding capsule serotypes and the presence of specific virulence genes were 

identified in the 249 study isolates. Supplementary Table 1 provides a detailed description of capsule 

typing results. In brief, 43 different capsule loci were identified (Supplementary Fig. 1a), with 4 

capsule loci with the same wzi gene allele were detected in more than one reservoir (Supplementary 

Fig. 1b). The rmpA gene (encoding a hypermucoid phenotype associated with increased capsule 

production) was identified in one isolate (Supplementary Table 1). Colibactin and aerobactin were 

only found in environmental isolates and salmochelin was not detected in any study isolate. 

Yersiniabactin and ICEKp elements were identified in hospital sewage, wastewater, humans and the 

hospital environment, but ICEKp types and yersiniabactin loci were predominantly reservoir and 

MLST-specific (Supplementary Table 1). ICEKp10 was the only element that carried genes encoding 

yersiniabactin (ybt1), colibactin and aerobactin, and was present in ST23 isolates from the ward 

environment.  

 

DISCUSSION  

Here, we identified transmission of K. pneumoniae between patients and their ward environment 

and several broad environmental contamination events. A previous study suggested that K. 

pneumoniae is more transmissible than E. coli [29], but we did not capture episodes of patient-to-

patient transmission. The extensive genetic diversity of K. pneumoniae isolated from patient stool is 

consistent with previous studies [14, 21].  Within-host diversity was limited, with 2/17 cases carrying 

more than one lineage and little diversity within the same lineage in a given host. We isolated K. 

pneumoniae from turkey, dairy cattle and wastewater, as described previously [30-34], but found no 

evidence to indicate that livestock or wastewater acted as a recent reservoir for K. pneumoniae 

isolated from patients. By contrast, we identified transmission of K. pneumoniae between farms.  
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Highly related plasmids carrying blaCTX-M-15 were identified in isolates from the healthcare setting, 

and in isolates from non-healthcare settings, but we found no evidence for sharing of the same 

plasmid in healthcare and non-healthcare isolates. This suggests that livestock, wastewater and 

hospital sewage in this region were not a direct source of blaCTX-M-15 plasmids in humans. Wastewater 

treatments were ineffective in eliminating K. pneumoniae from wastewater leading to downstream 

environmental contamination, which may contribute to the spread of antimicrobial resistance. 

Livestock isolates lacked virulence genes for yersiniabactin, salmochelin, aerobactin and colibactin, 

suggesting that livestock do not play a role in disseminating these virulence factors. Yersiniabactin 

was found in isolates from patients, municipal wastewater and hospital sewage, but the presence of 

an identical genetic locus (ybt 9) was only identified in ST268 isolates from a patient and their 

environment.  

 

Our study has several limitations. We only recruited half of patients admitted to the two hematology 

wards, and alternative sources such as taps and patient food and water were not investigated.  

Overall, 17/149 (11%) patients were positive for stool carriage of K. pneumoniae, which is similar to 

that reported in Australia [21], but lower than a prevalence rate reported from the United States 

[15]. This low rate of recovery reduced the power to detect genetic relatedness between healthcare 

and non-healthcare associated isolates. Although we found no evidence for zoonotic transmission 

this may not reflect the situation elsewhere, particularly where people and livestock live in closer 

proximity.   

 

In conclusion, our findings support the continued focus on reducing environmental K. pneumoniae 

reservoirs in hospital settings. Within the limits of detection of the study, our findings do not support 
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the suggestion that K. pneumoniae or their mobile genetic elements encoding antibiotic resistance 

are commonly acquired from livestock.   
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FIGURE LEGENDS 

Figure 1. Patient recruitment and phylogeny of healthcare-associated K. pneumoniae isolates 

(A) Patients recruited and samples collected from study participants. (B) Maximum likelihood tree of 

isolates from patient stool, blood and the hospital environment based on SNPs in the core genome.  

 

Figure 2. Relatedness of K. pneumoniae isolated from different sources 

(A) Distribution of multilocus sequence types (STs) by source of isolation. (B) Maximum-likelihood 

core genome phylogeny of K. pneumoniae from humans, the hospital environment, hospital sewage, 

livestock and municipal wastewater from the East of England. The three clades are highlighted in 

orange (KpI), blue (KpII) and green (KpIII). The two right hand columns (from left to right) show 

isolate source, and those cases where STs were the same for both human and non-human isolates.  

 

Figure 3. Phylogeny of ST307 K. pneumoniae isolates and characterisation of plasmids present in 

isolates from patients and their environment  

(A) Maximum likelihood tree of ST307 K. pneumoniae isolates from patient stool, blood and the 

hospital environment based on SNPs in the core genome after removal of recombination. (B) 

Antimicrobial resistance genes and associated mobile elements in the pKPN3-307 Type B (GenBank: 

KY271405.1) reference plasmid and in the human (GenBank: MH745929) and environmental 

plasmids (GenBank: MH745930). The shared 31533-bp antimicrobial resistance region containing 

the blaCTX-M-15 element is highlighted in grey. Arrows indicate the orientation of features, with the 

forward direction defined as the direction of transcription for genes, towards the main part of the 

attC site for cassettes, in integrons towards attI for 5' flanking regions, away from the cassette array 

for 3'-flanking regions, relative to the direction of transcription of the transposase gene for IS and Tn 
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(i.e. IRL to IRR) and to the direction of the reverse transcriptase for Group II introns. The missing end 

of a feature is shown by a zig-zag line. 

 

Figure. 4. Sampling locations and phenotypic antimicrobial susceptibility across the K. pneumoniae 

phylogeny 

(A) Map of the East Anglia region of the UK, showing the locations of the farms (images indicate the 

animal species), wastewater treatment plants (water drops), and hospitals in the region (indicated 

by a white ‘H’ in a blue square). The hospital where the clinical and environmental isolates were 

collected is shown with H surrounded by a square. Adapted from "Genomic surveillance of 

Enterococcus faecium reveals limited sharing of strains and resistance genes between livestock and 

humans in the United Kingdom," by Gouliouris et al, 2018, mBio, 9 (6) e01780-18. Copyright 2018 

Gouliouris et al. Adapted with permission. (B) Maximum likelihood core genome phylogeny of 249 K. 

pneumoniae from human stool, blood, livestock, municipal wastewater and hospital sewage (left), 

and their phenotypic antimicrobial susceptibility (right). The first vertical column shows isolate 

source and the remainder the susceptibility to 19 antimicrobial drugs.  

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article-abstract/doi/10.1093/cid/ciz174/5370436 by U

niversity of C
am

bridge user on 12 April 2019



 

 25 

Figure 1 
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Figure 2 
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Figure 3 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article-abstract/doi/10.1093/cid/ciz174/5370436 by U

niversity of C
am

bridge user on 12 April 2019



 

 28 

Figure 4 
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