57 research outputs found

    Quantification of phosphatidylethanol 16:0/18:1, 18:1/18:1, and 16:0/16:0 in venous blood and venous and capillary dried blood spots from patients in alcohol withdrawal and control volunteers

    Get PDF
    Phosphatidylethanol species (PEths) are promising biomarkers of alcohol consumption. Here, we report on the set-up, validation, and application of a novel UHPLC-ESI-MS/MS method for the quantification of PEth 16:0/18:1, PEth 18:1/18:1, and PEth 16:0/16:0 in whole blood (30 mu L) and in venous (V, 30 mu L) or capillary (C, 3 punches (3 mm)) dried blood spots (DBS). The methods were linear from 10 (LLOQ) to 2000 ng/mL for PEth 16:0/18:1, from 10 (LLOQ) to 1940 ng/mL for PEth 18:1/18:1, and from 19 (LLOQ) to 3872 ng/mL for PEth 16:0/16:0. Extraction efficiencies were higher than 55 % (RSD < 18 %) and matrix effects compensated for by IS were between 77 and 125 % (RSD < 10 %). Accuracy, repeatability, and intermediate precision fulfilled acceptance criteria (bias and RSD below 13 %). Validity of the procedure for determination of PEth 16:0/18:1 in blood was demonstrated by the successful participation in a proficiency test. The quantification of PEths in C-DBS was not significantly influenced by the hematocrit, punch localization, or spot volume. The stability of PEths in V-DBS stored at room temperature was demonstrated up to 6 months. The method was applied to authentic samples (whole blood, V-DBS, and C-DBS) from 50 inpatients in alcohol withdrawal and 50 control volunteers. Applying a cut-off value to detect inpatients at 221 ng/mL for PEth 16:0/18:1 provided no false positive results and a good sensitivity (86 %). Comparison of quantitative results (Bland-Altman plot, Passing-Bablok regression, and Wilcoxon signed rank test) revealed that V-DBS and C-DBS were valid alternatives to venous blood for the detection of alcohol consumption

    Critical illness induces alternative activation of M2 macrophages in adipose tissue

    Get PDF
    INTRODUCTION: We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. METHODS: We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n=20) and non-surviving prolonged critically ill patients (n=61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. RESULTS: Subcutaneous and visceral adipose tissue biopsies from nonsurviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-alpha and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-gamma PPARgamma a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARgamma protein levels. CONCLUSIONS: Unlike obesity, critical illness evokes adipose tissue accumulation of alternatively activated M2 macrophages, which have local anti-inflammatory and insulin sensitizing features. This M2 macrophage accumulation may contribute to the previously observed protective metabolic activity of adipose tissue during critical illness.status: publishe

    Identification of a Functional Non-coding Variant in the GABA

    Get PDF
    GABA type-A (GABA-A) receptors containing the α2 subunit (GABRA2) are expressed in most brain regions and are critical in modulating inhibitory synaptic function. Genetic variation at the GABRA2 locus has been implicated in epilepsy, affective and psychiatric disorders, alcoholism and drug abuse. Gabra2 expression varies as a function of genotype and is modulated by sequence variants in several brain structures and populations, including F2 crosses originating from C57BL/6J (B6J) and the BXD recombinant inbred family derived from B6J and DBA/2J. Here we demonstrate a global reduction of GABRA2 brain protein and mRNA in the B6J strain relative to other inbred strains, and identify and validate the causal mutation in B6J. The mutation is a single base pair deletion located in an intron adjacent to a splice acceptor site that only occurs in the B6J reference genome. The deletion became fixed in B6J between 1976 and 1991 and is now pervasive in many engineered lines, BXD strains generated after 1991, the Collaborative Cross, and the majority of consomic lines. Repair of the deletion using CRISPR-Cas9-mediated gene editing on a B6J genetic background completely restored brain levels of GABRA2 protein and mRNA. Comparison of transcript expression in hippocampus, cortex, and striatum between B6J and repaired genotypes revealed alterations in GABA-A receptor subunit expression, especially in striatum. These results suggest that naturally occurring variation in GABRA2 levels between B6J and other substrains or inbred strains may also explain strain differences in anxiety-like or alcohol and drug response traits related to striatal function. Characterization of the B6J private mutation in the Gabra2 gene is of critical importance to molecular genetic studies in neurobiological research because this strain is widely used to generate genetically engineered mice and murine genetic populations, and is the most widely utilized strain for evaluation of anxiety-like, depression-like, pain, epilepsy, and drug response traits that may be partly modulated by GABRA2 function

    Leukocyte telomere length in paediatric critical illness

    Get PDF
    __Background:__ Children who have suffered from critical illnesses that required treatment in a paediatric intensive care unit (PICU) have long-term physical and neurodevelopmental impairments. The mechanisms underlying this legacy remain largely unknown. In patients suffering from chronic diseases hallmarked by inflammation and oxidative stress, poor long-term outcome has been associated with shorter telomeres. Shortened telomeres have also been reported to result from excessive food consumption and/or unhealthy nutrition. We investigated whether critically ill children admitted to the PICU have shorter-than-normal telomeres, and whether early parenteral nutrition (PN) independently affects telomere length when adjusting for known determinants of telomere length. __Methods:__ Telomere length was quantified in leukocyte DNA from 342 healthy children and from 1148 patients who had been enrolled in the multicenter, randomised controlled trial (RCT), PEPaNIC. These patients were randomly allocated to initiation of PN within 24 h (early PN) or to withholding PN for one week in PICU (late PN). The impact of early PN versus late PN on the change in telomere length from the first to last PICU-day was investigated with multivariable linear regression analyses. __Results:__ Leukocyte telomeres were 6% shorter than normal upon PICU admission (median 1.625 (IQR 1.446-1.825) telomere/single-copy-gene ratio (T/S) units vs. 1.727 (1.547-1.915) T/S-units in healthy children (P < 0.0001)). Adjusted for potential baseline determinants and leukocyte composition, early PN was associated with telomere shortening during PICU stay as compared with late PN (estimate early versus late PN -0.021 T/S-units, 95% CI -0.038; 0.004, P = 0.01). Other independent determinants of telomere length identified in this model were age, gender, baseline telomere length and fraction of neutrophils in the sample from which the DNA was extracted. Telomere shortening with early PN was independent of post-randomisation factors affected by early PN, including longer length of PICU stay, larger amounts of insulin and higher risk of infection. __Conclusions:__ Shorter than normal leukocyte telomeres are present in critically ill children admitted to the PICU. Early initiation of PN further shortened telomeres, an effect that was independent of other determinants. Whether such telomere-shortening predisposes to long-term consequences of paediatric critical illness should be further investigated in a prospective follow-up study

    Identification of a Functional Non-coding Variant in the GABAA Receptor α2 Subunit of the C57BL/6J Mouse Reference Genome: Major Implications for Neuroscience Research

    Get PDF
    GABA type-A (GABA-A) receptors containing the α2 subunit (GABRA2) are expressed in most brain regions and are critical in modulating inhibitory synaptic function. Genetic variation at the GABRA2 locus has been implicated in epilepsy, affective and psychiatric disorders, alcoholism and drug abuse. Gabra2 expression varies as a function of genotype and is modulated by sequence variants in several brain structures and populations, including F2 crosses originating from C57BL/6J (B6J) and the BXD recombinant inbred family derived from B6J and DBA/2J. Here we demonstrate a global reduction of GABRA2 brain protein and mRNA in the B6J strain relative to other inbred strains, and identify and validate the causal mutation in B6J. The mutation is a single base pair deletion located in an intron adjacent to a splice acceptor site that only occurs in the B6J reference genome. The deletion became fixed in B6J between 1976 and 1991 and is now pervasive in many engineered lines, BXD strains generated after 1991, the Collaborative Cross, and the majority of consomic lines. Repair of the deletion using CRISPR-Cas9-mediated gene editing on a B6J genetic background completely restored brain levels of GABRA2 protein and mRNA. Comparison of transcript expression in hippocampus, cortex, and striatum between B6J and repaired genotypes revealed alterations in GABA-A receptor subunit expression, especially in striatum. These results suggest that naturally occurring variation in GABRA2 levels between B6J and other substrains or inbred strains may also explain strain differences in anxiety-like or alcohol and drug response traits related to striatal function. Characterization of the B6J private mutation in the Gabra2 gene is of critical importance to molecular genetic studies in neurobiological research because this strain is widely used to generate genetically engineered mice and murine genetic populations, and is the most widely utilized strain for evaluation of anxiety-like, depression-like, pain, epilepsy, and drug response traits that may be partly modulated by GABRA2 function

    Lung transplantation following controlled hypothermic storage with a portable lung preservation device: first multicenter European experience

    Get PDF
    IntroductionCompared with traditional static ice storage, controlled hypothermic storage (CHS) at 4–10°C may attenuate cold-induced lung injury between procurement and implantation. In this study, we describe the first European lung transplant (LTx) experience with a portable CHS device.MethodsA prospective observational study was conducted of all consecutively performed LTx following CHS (11 November 2022 and 31 January 2024) at two European high-volume centers. The LUNGguard device was used for CHS. The preservation details, total ischemic time, and early postoperative outcomes are described. The data are presented as median (range: minimum–maximum) values.ResultsA total of 36 patients underwent LTx (i.e., 33 bilateral, 2 single LTx, and 1 lobar). The median age was 61 (15–68) years; 58% of the patients were male; 28% of the transplantations had high-urgency status; and 22% were indicated as donation after circulatory death. In 47% of the patients, extracorporeal membrane oxygenation (ECMO) was used for perioperative support. The indications for using the CHS device were overnight bridging (n = 26), remote procurement (n = 4), rescue allocation (n = 2), logistics (n = 2), feasibility (n = 1), and extended-criteria donor (n = 1). The CHS temperature was 6.5°C (3.7°C–9.3°C). The preservation times were 11 h 18 (2 h 42–17 h 9) and 13 h 40 (4 h 5–19 h 36) for the first and second implanted lungs, respectively, whereas the total ischemic times were 13 h 38 (4 h 51–19 h 44) and 15 h 41 (5 h 54–22 h 48), respectively. The primary graft dysfunction grade 3 (PGD3) incidence rates were 33.3% within 72 h and 2.8% at 72 h. Intensive care unit stay was 8 (4–62) days, and the hospital stay was 28 (13–87) days. At the last follow-up [139 (7–446) days], three patients were still hospitalized. One patient died on postoperative day 7 due to ECMO failure. In-hospital Clavien–Dindo complications of 3b were observed in six (17%) patients, and 4a in seven (19%).ConclusionCHS seems safe and feasible despite the high-risk recipient and donor profiles, as well as extended preservation times. PGD3 at 72 h was observed in 2.8% of the patients. This technology could postpone LTx to daytime working hours. Larger cohorts and longer-term outcomes are required to confirm these observations

    Ten tips for the intensive care management of transplanted lung patients

    No full text
    status: publishe

    Endocrine and Metabolic Alterations in Sepsis and Implications for Treatment

    No full text
    Sepsis induces profound neuroendocrine and metabolic alterations. During the acute phase, the neuroendocrine changes are directed toward restoration of homeostasis, and also limit unnecessary energy consumption in the setting of restricted nutrient availability. Such changes are probably adaptive. In patients not recovering quickly, a prolonged critically ill phase may ensue, with different neuroendocrine changes, which may represent a maladaptive response. Whether stress hyperglycemia should be aggressively treated or tolerated remains a matter of debate. Until new evidence from randomized controlled trials becomes available, preventing severe hyperglycemia is recommended. Evidence supports withholding parenteral nutrition in the acute phase of sepsis.status: publishe

    Glycemic Control in the ICU

    No full text
    status: publishe

    Glucose homeostasis, nutrition and infections during critical illness

    No full text
    Critical illness is a complex life-threatening disease characterised by profound endocrine and metabolic alterations and by a dysregulated immune response, together contributing to the susceptibility for nosocomial infections and sepsis. Hitherto, two metabolic strategies have been shown to reduce nosocomial infections in the critically ill, namely tight blood glucose control and early macronutrient restriction. Hyperglycaemia, as part of the endocrine-metabolic responses to stress, is present in virtually all critically ill patients and is associated with poor outcome. Maintaining normoglycaemia with intensive insulin therapy has shown to reduce morbidity and mortality, by prevention of vital organ dysfunction and prevention of new severe infections. The favourable effects of this intervention were attributed to the avoidance of glucose toxicity and mitochondrial damage in cells of vital organs and in immune cells. Hyperglycaemia was shown to impair macrophage phagocytosis and oxidative burst capacity, which could be restored by targeting normoglycaemia. An anti-inflammatory effect of insulin may have contributed to prevention of collateral damage to host tissues. Not using parenteral nutrition during the first week in ICU, and thus accepting a large macronutrient deficit, also resulted in fewer secondary infections, less weakness and accelerated recovery. This was at least partially explained by a suppressive effect of early parenteral nutrition on autophagic processes, which may have jeopardized crucial antimicrobial defences and cell damage removal. The beneficial impact of these two metabolic strategies has opened a new field of research that will allow to improve the understanding of the determinants of nosocomial infections, sepsis and organ failure in the critically ill.status: publishe
    • …
    corecore