45 research outputs found

    PROK2/PROKR2 Signaling and Kallmann Syndrome

    Get PDF
    Kallmann syndrome (KS) is a developmental disease that associates hypogonadism and a deficiency of the sense of smell. The reproductive phenotype of KS results from the primary interruption of the olfactory, vomeronasal, and terminal nerve fibers in the frontonasal region, which in turn disrupts the embryonic migration of neuroendocrine gonadotropin-releasing hormone (GnRH) synthesizing cells from the nose to the brain. This is a highly heterogeneous genetic disease, and mutations in any of the nine genes identified so far have been found in approximately 30% of the KS patients. PROKR2 and PROK2, which encode the G protein-coupled prokineticin receptor-2 and its ligand prokineticin-2, respectively, are two of these genes. Homozygous knockout mice for the orthologous genes exhibit a phenotype reminiscent of the KS features, but biallelic mutations in PROKR2 or PROK2 (autosomal recessive mode of disease transmission) have been found only in a minority of the patients, whereas most patients carrying mutations in these genes are heterozygotes. The mutations, mainly missense mutations, have deleterious effects on PROKR2 signaling in transfected cells, ranging from defective cell surface-targeting of the receptor to defective coupling to G proteins or impaired receptor-ligand interaction, but the same mutations have also been found in apparently unaffected individuals, which suggests a digenic/oligogenic mode of inheritance of the disease in heterozygous patients. This non-Mendelian mode of inheritance has so far been confirmed only in a few patients. However, it may account for the unusually high proportion of KS sporadic cases compared to familial cases

    Defective migration of neuroendocrine GnRH cells in human arrhinencephalic conditions

    Get PDF
    Patients with Kallmann syndrome (KS) have hypogonadotropic hypogonadism caused by a deficiency of gonadotropin-releasing hormone (GnRH) and a defective sense of smell related to olfactory bulb aplasia. Based on the findings in a fetus affected by the X chromosome–linked form of the disease, it has been suggested that hypogonadism in KS results from the failed embryonic migration of neuroendocrine GnRH1 cells from the nasal epithelium to the forebrain. We asked whether this singular observation might extend to other developmental disorders that also include arrhinencephaly. We therefore studied the location of GnRH1 cells in fetuses affected by different arrhinencephalic disorders, specifically X-linked KS, CHARGE syndrome, trisomy 13, and trisomy 18, using immunohistochemistry. Few or no neuroendocrine GnRH1 cells were detected in the preoptic and hypothalamic regions of all arrhinencephalic fetuses, whereas large numbers of these cells were present in control fetuses. In all arrhinencephalic fetuses, many GnRH1 cells were present in the frontonasal region, the first part of their migratory path, as were interrupted olfactory nerve fibers that formed bilateral neuromas. Our findings define a pathological sequence whereby a lack of migration of neuroendocrine GnRH cells stems from the primary embryonic failure of peripheral olfactory structures. This can occur either alone, as in isolated KS, or as part of a pleiotropic disease, such as CHARGE syndrome, trisomy 13, and trisomy 18

    Kallmann Syndrome: Mutations in the Genes Encoding Prokineticin-2 and Prokineticin Receptor-2

    Get PDF
    Kallmann syndrome combines anosmia, related to defective olfactory bulb morphogenesis, and hypogonadism due to gonadotropin-releasing hormone deficiency. Loss-of-function mutations in KAL1 and FGFR1 underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. Mutations in these genes, however, only account for approximately 20% of all Kallmann syndrome cases. In a cohort of 192 patients we took a candidate gene strategy and identified ten and four different point mutations in the genes encoding the G protein-coupled prokineticin receptor-2 (PROKR2) and one of its ligands, prokineticin-2 (PROK2), respectively. The mutations in PROK2 were detected in the heterozygous state, whereas PROKR2 mutations were found in the heterozygous, homozygous, or compound heterozygous state. In addition, one of the patients heterozygous for a PROKR2 mutation was also carrying a missense mutation in KAL1, thus indicating a possible digenic inheritance of the disease in this individual. These findings reveal that insufficient prokineticin-signaling through PROKR2 leads to abnormal development of the olfactory system and reproductive axis in man. They also shed new light on the complex genetic transmission of Kallmann syndrome

    The complex genetics of Kallmann syndrome: KAL1, FGFR1, FGF8, PROKR2, PROK2, et al.

    No full text
    International audienceKallmann syndrome (KS) combines hypogonadotropic hypogonadism and anosmia. Anosmia is related to the absence or hypoplasia of the olfactory bulbs and tracts. Hypogonadism is due to gonadotropin-releasing hormone (GnRH) deficiency, which presumably results from a failure of the embryonic migration of neuroendocrine GnRH cells from the olfactory epithelium to the forebrain. This failure could be a consequence of the early degeneration of olfactory nerve and terminal nerve fibres, because the latter normally act as guiding cues for the migration of GnRH cells. Defects in GnRH cell fate specification, differentiation, axon elongation or axon targeting to the hypothalamus median eminence may, however, also contribute to GnRH deficiency, at least in some genetic forms of the disease. To date, five KS genes have been identified, namely, FGFR1, FGF8, PROKR2, PROK2, and KAL1. Mutations in these genes, however, account for barely 30% of all KS cases. Mutations in FGFR1, encoding fibroblast growth factor receptor 1, underlie an autosomal dominant form of the disease. Mutations in PROKR2 and PROK2, encoding prokineticin receptor-2 and prokineticin-2, have been found in heterozygous, homozygous or compound heterozygous states. These two genes are likely to be involved both in monogenic recessive and digenic or oligogenic KS transmission modes. Finally, KAL1, encoding the extracellular glycoprotein anosmin-1, is responsible for the X chromosome-linked form of the disease. It is believed that anosmin-1 acts as an enhancer of FGF signalling and perhaps of prokineticin signalling too

    Syndrome de Kallmann De Morsier : Insuffisance de signalisation par les FGF ?

    No full text
    Le syndrome de Kallmann De Morsier est une maladie du développement embryonnaire qui associe un hypogonadisme central et une anosmie. Alors que des mutations du gène KAL1 codant pour l’anosmine-1, une protéine présente dans certaines matrices extracellulaires pendant l’organogenèse, avaient été mises en évidence dans la forme liée au chromosome X, des mutations du gène qui code pour FGFR1, l’un des récepteurs des fibroblast growth factors (FGF), ont été récemment identifiées dans une forme autosomique dominante de la maladie. Il reste à découvrir les autres gènes impliqués dans ce syndrome cliniquement et génétiquement hétérogène. Cependant, nous proposons dès à présent une hypothèse physiopathologique unificatrice pour rendre compte de l’aplasie des bulbes olfactifs qui caractérise ce syndrome.Kallmann syndrome (KAL) associates hypogonadotropic hypogonadism and anosmia, i.e. a deficiency of the sense of smell. Anosmia is related to the absence or the hypoplasia of the olfactory bulbs. Hypogonadism is due to GnRH deficiency, and is likely to result from the failed embryonic migration of GnRH-synthesizing neurons. These cells normally migrate from the olfactory epithelium to the forebrain along the olfactory nerve pathway. Kallmann syndrome is genetically heterogeneous. The gene responsible for the X-chromosome linked form of the disease, KAL-1, has been identified in 1991. KAL1 encodes a ~95 kDa glycoprotein of unknown function, which is present locally in various extracellular matrices during the period of organogenesis. The recent finding that FGFR1 mutations are involved in an autosomal dominant form of Kallmann syndrome (KAL-2), combined to the analysis of mutant mouse embryos that no longer express Fgfr1 in the telencephalon, suggests that the disease results from a deficiency in FGF-signaling at the earliest stage of olfactory bulb morphogenesis. We propose that the role of the KAL1 gene product, the extracellular matrix protein anosmin-1, is to enhance FGF-signaling, and suggest that the gender difference in anosmin-1 dosage (because KAL1 partially escapes X-inactivation) explains the higher prevalence of the disease in males

    Mesure de l’énergie libre molaire partielle relative de l’oxygène [math] dans les oxydes UO

    No full text
    Les mesures de l’énergie libre molaire partielle de l’oxygène dans les oxydes UO2+x sont reprises entre 900 °C et 1 150 °C pour 2,001 4 < O/U < 2,04. L’emploi de mélanges CO — CO2 de proportions bien connues et l’utilisation minutieuse d’une thermobalance Ugine-Eyraud permettent de déterminer à ± 10-4 près la composition des oxydes en équilibre avec une atmosphère de [math] donnée. Les valeurs de [math] à 1 100 °C semblent indépendantes de l’origine et de là texture de l’oxyde. Nous montrons l’impossibilité actuelle d’obtenir [math] par dérivation de [math] dans le domaine des faibles écarts à la stœchiométrie et la nécessité de sa mesure directe par calorimétrie
    corecore