8 research outputs found

    SMF-1, SMF-2 and SMF-3 DMT1 Orthologues Regulate and Are Regulated Differentially by Manganese Levels in C. elegans

    Get PDF
    Manganese (Mn) is an essential metal that can exert toxic effects at high concentrations, eventually leading to Parkinsonism. A major transporter of Mn in mammals is the divalent-metal transporter (DMT1). We characterize here DMT1-like proteins in the nematode C. elegans, which regulate and are regulated by Mn and iron (Fe) content. We identified three new DMT1-like genes in C. elegans: smf-1, smf-2 and smf-3. All three can functionally substitute for loss of their yeast orthologues in S. cerevisiae. In the worm, deletion of smf-1 or smf-3 led to an increased Mn tolerance, while loss of smf-2 led to increased Mn sensitivity. smf mRNA levels measured by QRT-PCR were up-regulated upon low Mn and down-regulated upon high Mn exposures. Translational GFP-fusions revealed that SMF-1 and SMF-3 strongly localize to partially overlapping apical regions of the gut epithelium, suggesting a differential role for SMF-1 and SMF-3 in Mn nutritional intake. Conversely, SMF-2 was detected in the marginal pharyngeal epithelium, possibly involved in metal-sensing. Analysis of metal content upon Mn exposure in smf mutants revealed that SMF-3 is required for normal Mn uptake, while smf-1 was dispensable. Higher smf-2 mRNA levels correlated with higher Fe content, supporting a role for SMF-2 in Fe uptake. In smf-1 and smf-3 but not in smf-2 mutants, increased Mn exposure led to decreased Fe levels, suggesting that both metals compete for transport by SMF-2. Finally, SMF-3 was post-translationally and reversibly down-regulated following Mn-exposure. In sum, we unraveled a complex interplay of transcriptional and post-translational regulations of 3 DMT1-like transporters in two adjacent tissues, which regulate metal-content in C. elegans

    Design and implementation of a decision aid for juvenile idiopathic arthritis medication choices

    No full text
    Abstract Background Randomized trials have demonstrated the efficacy of patient decision aids to facilitate shared decision making in clinical situations with multiple medically reasonable options for treatment. However, little is known about how best to implement these tools into routine clinical practice. In addition, reliable implementation of decision aids has been elusive and spread within pediatrics has been slow. We sought to develop and reliably implement a decision aid for treatment of children with juvenile idiopathic arthritis. Methods To design our decision aid, we partnered with patient, parent, and clinician stakeholders from the Pediatric Rheumatology Care and Outcomes Improvement Network. Six sites volunteered to use quality improvement methods to implement the decision aid. Four of these sites collected parent surveys following visits to assess outcomes. Parents reported on clinician use of the decision aid and the amount of shared decision making and uncertainty they experienced. We used chi-square tests to compare eligible visits with and without use of the decision aid on the experience of shared decision making and uncertainty. Results After 18 rounds of testing and revision, stakeholders approved the decision aid design for regular use. Qualitative feedback from end-users was positive. During the implementation project, the decision aid was used in 35% of visits where starting or switching medication was discussed. Clinicians used the decision aid as intended in 68% of these visits. The vast majority of parents reported high levels of shared decision making following visits with (64/76 = 84%) and without (80/95 = 84%) use of the decision aid (p = 1). Similarly, the vast majority of parents reported no uncertainty following visits with (74/76 = 97%) and without (91/95 = 96%) use of the decision aid (p = 0.58). Conclusions Although user acceptability of the decision aid was high, reliable implementation in routine clinical care proved challenging. Our parsimonious approach to outcome assessment failed to detect a difference between visits with and without use of our aid. Innovative approaches are needed to facilitate use of decision aids and the assessment of outcomes

    Standardising acute myeloid leukaemia classification systems:a perspective from a panel of international experts

    No full text
    The existence of two acute myeloid leukaemia classification systems-one put forth by WHO and one by the International Consensus Classification in 2022-is concerning. Although both systems appropriately move towards genomic disease definitions and reduced emphasis on blast enumeration, there are consequential disagreements between the two systems on what constitutes a diagnosis of acute myeloid leukaemia. This fundamental problem threatens the ability of heath-care providers to diagnose acute myeloid leukaemia, communicate with patients and other health-care providers, and deliver appropriate and consistent management strategies for patients with the condition. Clinical trial eligibility, standardised response assessments, and eventual drug development and regulatory pathways might also be negatively affected by the discrepancies. In this Viewpoint, we review the merits and limitations of both classification systems and illustrate how the coexistence, as well as application of both systems is an undue challenge to patients, clinicians, hematopathologists, sponsors of research, and regulators. Lastly, we emphasise the urgency and propose a roadmap, by which the two divergent classification systems can be harmonised

    Research capacity. Enabling the genomic revolution in Africa.

    No full text
    no availabl
    corecore