163 research outputs found

    High toxicity and specificity of the saponin 3-GlcA-28-AraRhaxyl-medicagenate, from Medicago truncatula seeds, for Sitophilus oryzae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of the increasingly concern of consumers and public policy about problems for environment and for public health due to chemical pesticides, the search for molecules more safe is currently of great importance. Particularly, plants are able to fight the pathogens as insects, bacteria or fungi; so that plants could represent a valuable source of new molecules.</p> <p>Results</p> <p>It was observed that <it>Medicago truncatul</it>a seed flour displayed a strong toxic activity towards the adults of the rice weevil <it>Sitophilus oryzae</it> (Coleoptera), a major pest of stored cereals. The molecule responsible for toxicity was purified, by solvent extraction and HPLC, and identified as a saponin, namely 3-GlcA-28-AraRhaxyl-medicagenate. Saponins are detergents, and the CMC of this molecule was found to be 0.65 mg per mL. Neither the worm <it>Caenorhabditis elegans</it> nor the bacteria <it>E. coli</it> were found to be sensitive to this saponin, but growth of the yeast <it>Saccharomyces cerevisiae</it> was inhibited at concentrations higher than 100 Όg per mL. The purified molecule is toxic for the adults of the rice weevils at concentrations down to 100 Όg per g of food, but this does not apply to the others insects tested, including the coleopteran <it>Tribolium castaneum</it> and the Sf9 insect cultured cells.</p> <p>Conclusions</p> <p>This specificity for the weevil led us to investigate this saponin potential for pest control and to propose the hypothesis that this saponin has a specific mode of action, rather than acting <it>via</it> its non-specific detergent properties.</p

    Uphold the nuclear weapons test moratorium

    Get PDF
    The Trump administration is considering renewing nuclear weapons testing (1), a move that could increase the risk of another nuclear arms race as well as an inadvertent or intentional nuclear war. Following in the long tradition of scientists opposing nuclear weapons due to their harmful effects on both humanity and the planet (2), we ask the U.S. government to desist from plans to conduct nuclear tests. During the Cold War, the United States conducted 1030 nuclear weapons tests, more than all other nuclear-armed nations combined (3). In 1996, the United States signed the Comprehensive Nuclear Test Ban Treaty (CTBT), agreeing not to conduct a nuclear weapons test of any yield (4). The United States has not yet ratified the CTBT but did spearhead the 2016 adoption of UN Security Council Resolution 2310, which calls upon all countries to uphold the object and purpose of the CTBT by not conducting nuclear tests (5). Eight of the nine nuclear-armed states, including the five permanent members of the UN Security Council, have observed a moratorium on nuclear testing since 1998 (3, 4). The ninth, North Korea, responding to international pressure, stopped testing warhead detonations (as opposed to missile flights) in 2017 (6). If the United States ratified the CTBT, joining the 168 countries who have already done so (4), there is a good chance that the other holdout countries would ratify the treaty as well (7)

    Uphold the nuclear weapons test moratorium

    Get PDF
    The Trump administration is considering renewing nuclear weapons testing (1), a move that could increase the risk of another nuclear arms race as well as an inadvertent or intentional nuclear war. Following in the long tradition of scientists opposing nuclear weapons due to their harmful effects on both humanity and the planet (2), we ask the U.S. government to desist from plans to conduct nuclear tests. During the Cold War, the United States conducted 1030 nuclear weapons tests, more than all other nuclear-armed nations combined (3). In 1996, the United States signed the Comprehensive Nuclear Test Ban Treaty (CTBT), agreeing not to conduct a nuclear weapons test of any yield (4). The United States has not yet ratified the CTBT but did spearhead the 2016 adoption of UN Security Council Resolution 2310, which calls upon all countries to uphold the object and purpose of the CTBT by not conducting nuclear tests (5). Eight of the nine nuclear-armed states, including the five permanent members of the UN Security Council, have observed a moratorium on nuclear testing since 1998 (3, 4). The ninth, North Korea, responding to international pressure, stopped testing warhead detonations (as opposed to missile flights) in 2017 (6). If the United States ratified the CTBT, joining the 168 countries who have already done so (4), there is a good chance that the other holdout countries would ratify the treaty as well (7)

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore