12 research outputs found

    Criteria for arrhythmogenicity in genetically-modified Langendorff-perfused murine hearts modelling the congenital long QT syndrome type 3 and the Brugada syndrome

    Get PDF
    The experiments investigated the applicability of two established criteria for arrhythmogenicity in Scn5a+/Δ and Scn5a+/− murine hearts modelling the congenital long QT syndrome type 3 (LQT3) and the Brugada syndrome (BrS). Monophasic action potentials (APs) recorded during extrasystolic stimulation procedures from Langendorff-perfused control hearts and hearts treated with flecainide (1 μM) or quinidine (1 or 10 μM) demonstrated that both agents were pro-arrhythmic in wild-type (WT) hearts, quinidine was pro-arrhythmic in Scn5a+/Δ hearts, and that flecainide was pro-arrhythmic whereas quinidine was anti-arrhythmic in Scn5a+/− hearts, confirming clinical findings. Statistical analysis confirmed a quadratic relationship between epicardial and endocardial AP durations (APDs) in WT control hearts. However, comparisons between plots of epicardial against endocardial APDs and this reference curve failed to correlate with arrhythmogenicity. Restitution curves, relating APD to diastolic interval (DI), were then constructed for the first time in a murine system and mono-exponential growth functions fitted to these curves. Significant (P < 0.05) alterations in the DI at which slopes equalled unity, an established indicator of arrhythmogenicity, now successfully predicted the presence or absence of arrhythmogenicity in all cases. We thus associate changes in the slopes of restitution curves with arrhythmogenicity in models of LQT3 and BrS

    Alternans in Genetically Modified Langendorff-Perfused Murine Hearts Modeling Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    The relationship between alternans and arrhythmogenicity was studied in genetically modified murine hearts modeling catecholaminergic polymorphic ventricular tachycardia (CPVT) during Langendorff perfusion, before and after treatment with catecholamines and a β-adrenergic antagonist. Heterozygous (RyR2p/s) and homozygous (RyR2s/s) RyR2-P2328S hearts, and wild-type (WT) controls, were studied before and after treatment with epinephrine (100 nM and 1 μM) and propranolol (100 nM). Monophasic action potential recordings demonstrated significantly greater incidences of arrhythmia in RyR2p/s and RyR2s/s hearts as compared to WTs. Arrhythmogenicity in RyR2s/s hearts was associated with alternans, particularly at short baseline cycle lengths. Both phenomena were significantly accentuated by treatment with epinephrine and significantly diminished by treatment with propranolol, in full agreement with clinical expectations. These changes took place, however, despite an absence of changes in mean action potential durations, ventricular effective refractory periods or restitution curve characteristics. Furthermore pooled data from all hearts in which arrhythmia occurred demonstrated significantly greater alternans magnitudes, but similar restitution curve slopes, to hearts that did not demonstrate arrhythmia. These findings thus further validate the RyR2-P2328S murine heart as a model for human CPVT, confirming an alternans phenotype in common with murine genetic models of the Brugada syndrome and the congenital long-QT syndrome type 3. In contrast to these latter similarities, however, this report demonstrates the dissociation of alternans from changes in the properties of restitution curves for the first time in a murine model of a human arrhythmic syndrome

    Global Array-Based Transcriptomics from Minimal Input RNA Utilising an Optimal RNA Isolation Process Combined with SPIA cDNA Probes

    Get PDF
    Technical advances in the collection of clinical material, such as laser capture microdissection and cell sorting, provide the advantage of yielding more refined and homogenous populations of cells. However, these attractive advantages are counter balanced by the significant difficultly in obtaining adequate nucleic acid yields to allow transcriptomic analyses. Established technologies are available to carry out global transcriptomics using nanograms of input RNA, however, many clinical samples of low cell content would be expected to yield RNA within the picogram range. To fully exploit these clinical samples the challenge of isolating adequate RNA yield directly and generating sufficient microarray probes for global transcriptional profiling from this low level RNA input has been addressed in the current report. We have established an optimised RNA isolation workflow specifically designed to yield maximal RNA from minimal cell numbers. This procedure obtained RNA yield sufficient for carrying out global transcriptional profiling from vascular endothelial cell biopsies, clinical material not previously amenable to global transcriptomic approaches. In addition, by assessing the performance of two linear isothermal probe generation methods at decreasing input levels of good quality RNA we demonstrated robust detection of a class of low abundance transcripts (GPCRs) at input levels within the picogram range, a lower level of RNA input (50 pg) than previously reported for global transcriptional profiling and report the ability to interrogate the transcriptome from only 10 pg of input RNA. By exploiting an optimal RNA isolation workflow specifically for samples of low cell content, and linear isothermal RNA amplification methods for low level RNA input we were able to perform global transcriptomics on valuable and potentially informative clinically derived vascular endothelial biopsies here for the first time. These workflows provide the ability to robustly exploit ever more common clinical samples yielding extremely low cell numbers and RNA yields for global transcriptomics

    Mouse model of SCN5A-linked hereditary Lenegre's disease - Age-related conduction slowing and myocardial fibrosis

    No full text
    Background-We have previously linked hereditary progressive cardiac conduction defect (hereditary Lenegre's disease) to a loss-of-function mutation in the gene encoding the main cardiac Na+ channel, SCN5A. In the present study, we investigated heterozygous Scn5a-knockout mice (Scn5a(+/-) mice) as a model for hereditary Lenegre's disease. Methods and Results-In Scn5a(+/-) mice, surface ECG recordings showed age-related lengthening of the P-wave and PR- and QRS-interval duration, coinciding with previous observations in patients with Lenegre's disease. Old but not young Scn5a(+/-) mice showed extensive fibrosis of their ventricular myocardium, a feature not seen in wild-type animals. In old Scn5a(+/-) mice, fibrosis was accompanied by heterogeneous expression of connexin 43 and upregulation of hypertrophic markers, including beta-MHC and skeletal alpha-actin. Global connexin 43 expression as assessed with Western blots was similar to wild-type mice. Decreased connexin 40 expression was seen in the atria. Using pangenomic microarrays and real-time PCR, we identified in Scn5a(+/-) mice an age-related upregulation of genes encoding Atf3 and Egr1 transcription factors. Echocardiography and hemodynamic investigations demonstrated conserved cardiac function with aging and lack of ventricular hypertrophy. Conclusions-We conclude that Scn5a(+/-) mice convincingly recapitulate the Lenegre's disease phenotype, including progressive impairment with aging of atrial and ventricular conduction associated with myocardial rearrangements and fibrosis. Our work provides the first demonstration that a monogenic ion channel defect can progressively lead to myocardial structural anomalie
    corecore