8 research outputs found

    Dissecting IWG-2 typical and atypical Alzheimer's disease: insights from cerebrospinal fluid analysis.

    No full text
    Pathobiological factors underlying phenotypic diversity in Alzheimer's disease (AD) are incompletely understood. We used an extended cerebrospinal fluid (CSF) panel to explore differences between "typical" with "atypical" AD and between amnestic, posterior cortical atrophy, logopenic aphasia and frontal variants. We included 97 subjects fulfilling International Working Group-2 research criteria for AD of whom 61 had "typical" AD and 36 "atypical" syndromes, and 30 controls. CSF biomarkers included total tau (T-tau), phosphorylated tau (P-tau), amyloid β1-42, amyloid βX-38/40/42, YKL-40, neurofilament light (NFL), and amyloid precursor proteins α and β. The typical and atypical groups were matched for age, sex, severity and rate of cognitive decline and had similar biomarker profiles, with the exception of NFL which was higher in the atypical group (p = 0.03). Sub-classifying the atypical group into its constituent clinical syndromes, posterior cortical atrophy was associated with the lowest T-tau [604.4 (436.8-675.8) pg/mL], P-tau (79.8 ± 21.8 pg/L), T-tau/Aβ1-42 ratio [2.3 (1.4-2.6)], AβX-40/X-42 ratio (22.1 ± 5.8) and rate of cognitive decline [1.9 (0.75-4.25) MMSE points/year]. Conversely, the frontal variant group had the highest levels of T-tau [1185.4 (591.7-1329.3) pg/mL], P-tau (116.4 ± 45.4 pg/L), T-tau/Aβ1-42 ratio [5.2 (3.3-6.9)] and AβX-40/X-42 ratio (27.9 ± 7.5), and rate of cognitive decline. Whilst on a group level IWG-2 "typical" and "atypical" AD share similar CSF profiles, which are very different from controls, atypical AD is a heterogeneous entity with evidence for subtle differences in amyloid processing and neurodegeneration between different clinical syndromes. These findings also have practical implications for the interpretation of clinical CSF biomarker results

    Progressive logopenic/phonological aphasia: Erosion of the language network

    Get PDF
    The primary progressive aphasias (PPA) are paradigmatic disorders of language network breakdown associated with focal degeneration of the left cerebral hemisphere. Here we addressed brain correlates of PPA in a detailed neuroanatomical analysis of the third canonical syndrome of PPA, logopenic/phonological aphasia (LPA), in relation to the more widely studied clinico-anatomical syndromes of semantic dementia (SD) and progressive nonfluent aphasia (PNFA). 32 PPA patients (9 SD, 14 PNFA, 9 LPA) and 18 cognitively normal controls had volumetric brain MRI with regional volumetry, cortical thickness, grey and white matter voxel-based morphometry analyses. Five of nine patients with LPA had cerebrospinal fluid biomarkers consistent with Alzheimer (AD) pathology (AD-PPA) and 2/9 patients had progranulin (GRN) mutations (GRN-PPA). The LPA group had tissue loss in a widespread left hemisphere network. Compared with PNFA and SD, the LPA group had more extensive involvement of grey matter in posterior temporal and parietal cortices and long association white matter tracts. Overlapping but distinct networks were involved in the AD-PPA and GRN-PPA subgroups, with more anterior temporal lobe involvement in GRN-PPA. The importance of these findings is threefold: firstly, the clinico-anatomical entity of LPA has a profile of brain damage that is complementary to the network-based disorders of SD and PNFA; secondly, the core phonological processing deficit in LPA is likely to arise from temporo-parietal junction damage but disease spread occurs through the dorsal language network (and in GRN-PPA, also the ventral language network); and finally, GRN mutations provide a specific molecular substrate for language network dysfunction

    Brain network decoupling with increased serum neurofilament and reduced cognitive function in Alzheimer’s disease

    No full text
    Neurofilament light chain, a putative measure of neuronal damage, is measurable in blood and cerebrospinal fluid and is predictive of cognitive function in individuals with Alzheimer Disease. There has been limited prior work linking neurofilament light and functional connectivity and no prior work has investigated neurofilament light associations with functional connectivity in autosomal dominant Alzheimer Disease. Here we assessed relationships between blood neurofilament light, cognition, and functional connectivity in a cross-sectional sample of 106 autosomal dominant Alzheimer Disease mutation carriers and 76 non-carriers. We employed an innovative network-level enrichment analysis approach in order to assess connectome-wide associations with neurofilament light. Neurofilament light was positively correlated with deterioration of functional connectivity within the default mode network and negatively correlated with connectivity between default mode network and executive control networks including the cingulo-opercular, salience, and dorsal attention networks. Further, reduced connectivity within the default mode network and between the default mode network and executive control networks was associated with reduced cognitive function. Hierarchical regression analysis revealed that neurofilament levels and functional connectivity within the default mode network and between the default mode network and the dorsal attention network explained significant variance in cognitive composite scores when controlling for age, sex, and education. A mediation analysis demonstrated that functional connectivity within the default mode network and between the default mode network and dorsal attention network partially mediated the relationship between blood neurofilament light levels and cognitive function. Our novel results indicate that blood estimates of neurofilament levels correspond to direct measurements of brain dysfunction, shedding new light on the underlying biological processes of Alzheimer Disease. Further, we demonstrate how variation within key brain systems can partially mediate the negative effects of heighted total serum neurofilament levels, suggesting potential regions for targeted interventions. Finally, our results lend further evidence that low-cost and minimally invasive blood measurements of neurofilament may be a useful marker of brain functional connectivity and cognitive decline in Alzheimer disease
    corecore