1,205 research outputs found

    Run-and-tumble particles with hydrodynamics: sedimentation, trapping and upstream swimming

    Full text link
    We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely perturb the steady state found without them, but for particles in a harmonic trap such a state is quite changed if the run length is larger than the confinement length: a self-assembled pump is formed. Particles likewise confined in a narrow channel show a generic upstream flux in Poiseuille flow: chiral swimming is not required

    Velocity profiles in shear-banding wormlike micelles

    Full text link
    Using Dynamic Light Scattering in heterodyne mode, we measure velocity profiles in a much studied system of wormlike micelles (CPCl/NaSal) known to exhibit both shear-banding and stress plateau behavior. Our data provide evidence for the simplest shear-banding scenario, according to which the effective viscosity drop in the system is due to the nucleation and growth of a highly sheared band in the gap, whose thickness linearly increases with the imposed shear rate. We discuss various details of the velocity profiles in all the regions of the flow curve and emphasize on the complex, non-Newtonian nature of the flow in the highly sheared band.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation

    Full text link
    Active Brownian particles (ABPs, such as self-phoretic colloids) swim at fixed speed vv along a body-axis u{\bf u} that rotates by slow angular diffusion. Run-and-tumble particles (RTPs, such as motile bacteria) swim with constant \u until a random tumble event suddenly decorrelates the orientation. We show that when the motility parameters depend on density ρ\rho but not on u{\bf u}, the coarse-grained fluctuating hydrodynamics of interacting ABPs and RTPs can be mapped onto each other and are thus strictly equivalent. In both cases, a steeply enough decreasing v(ρ)v(\rho) causes phase separation in dimensions d=2,3d=2,3, even when no attractive forces act between the particles. This points to a generic role for motility-induced phase separation in active matter. However, we show that the ABP/RTP equivalence does not automatically extend to the more general case of \u-dependent motilities

    Dynamics and stress in gravity driven granular flow

    Full text link
    We study, using simulations, the steady-state flow of dry sand driven by gravity in two-dimensions. An investigation of the microscopic grain dynamics reveals that grains remain separated but with a power-law distribution of distances and times between collisions. While there are large random grain velocities, many of these fluctuations are correlated across the system and local rearrangements are very slow. Stresses in the system are almost entirely transfered by collisions and the structure of the stress tensor comes almost entirely from a bias in the directions in which collisions occur.Comment: 4 pages, 3 eps figures, RevTe

    Equilibrium onions?

    Get PDF
    We demonstrate the possibility of a stable equilibrium multi-lamellar ("onion") phase in pure lamellar systems (no excess solvent) due to a sufficiently negative Gaussian curvature modulus. The onion phase is stabilized by non-linear elastic moduli coupled to a polydisperse size distribution (Apollonian packing) to allow space-filling without appreciable elastic distortion. This model is compared to experiments on copolymer-decorated lamellar surfactant systems, with reasonable qualitative agreement

    Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    Get PDF
    The parity-violating asymmetries between a longitudinally polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep-inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail

    Computing the local pressure in molecular dynamics simulations

    Full text link
    Computer simulations of inhomogeneous soft matter systems often require accurate methods for computing the local pressure. We present a simple derivation, based on the virial relation, of two equivalent expressions for the local (atomistic) pressure in a molecular dynamics simulation. One of these expressions, previously derived by other authors via a different route, involves summation over interactions between particles within the region of interest; the other involves summation over interactions across the boundary of the region of interest. We illustrate our derivation using simulations of a simple osmotic system; both expressions produce accurate results even when the region of interest over which the pressure is measured is very small.Comment: 11 pages, 4 figure

    Theory of nonlinear rheology and yielding of dense colloidal suspensions

    Full text link
    A first principles approach to the nonlinear flow of dense suspensions is presented which captures shear thinning of colloidal fluids and dynamical yielding of colloidal glasses. The advection of density fluctuations plays a central role, suppressing the caging of particles and speeding up structural relaxation. A mode coupling approach is developed to explore these effects.Comment: 4 pages, 2 figures; slightly corrected version; Phys. Rev. Lett., to be published (2002

    Statistical Mechanics of Stress Transmission in Disordered Granular Arrays

    Full text link
    We give a statistical-mechanical theory of stress transmission in disordered arrays of rigid grains with perfect friction. Starting from the equations of microscopic force and torque balance we derive the fundamental equations of stress equilibrium. We illustrate the validity of our approach by solving the stress distribution of a homogeneous and isotropic array.Comment: 4 pages, to be published in PR

    Coexistence and Phase Separation in Sheared Complex Fluids

    Full text link
    We demonstrate how to construct dynamic phase diagrams for complex fluids that undergo transitions under flow, in which the conserved composition variable and the broken-symmetry order parameter (nematic, smectic, crystalline, etc.) are coupled to shear rate. Our construction relies on a selection criterion, the existence of a steady interface connecting two stable homogeneous states. We use the (generalized) Doi model of lyotropic nematic liquid crystals as a model system, but the method can be easily applied to other systems, provided non-local effects are included.Comment: 4 pages REVTEX, 5 figures using epsf macros. To appear in Physical Review E (Rapid Communications
    corecore