126 research outputs found

    Sensory processing patterns, coping strategies, and quality of life among patients with unipolar and bipolar disorders.

    Get PDF
    OBJECTIVE: To compare sensory processing, coping strategies, and quality of life (QoL) in unipolar and bipolar patients; to examine correlations between sensory processing and QoL; and to investigate the relative contribution of sociodemographic characteristics, sensory processing, and coping strategies to the prediction of QoL. METHODS: Two hundred sixty-seven participants, aged 16-85 years (53.6+/-15.7), of whom 157 had a diagnosis of unipolar major depressive disorder and 110 had bipolar disorder type I and type II, completed the Adolescent/Adult Sensory Profile, Coping Orientations to Problems Experienced, and 12-item Short-Form Health Survey version 2. The two groups were compared with multivariate analyses. RESULTS: The unipolar and bipolar groups did not differ concerning sensory processing, coping strategies, or QoL. Sensory processing patterns correlated with QoL independently of mediation by coping strategies. Correlations between low registration, sensory sensitivity, sensation avoidance, and reduced QoL were found more frequently in unipolar patients than bipolar patients. Higher physical QoL was mainly predicted by lower age and lower sensory sensitivity, whereas higher mental QoL was mainly predicted by coping strategies. CONCLUSION: While age may predict physical QoL, coping strategies predict mental QoL. Future studies should further investigate the impact of sensory processing and coping strategies on patients' QoL in order to enhance adaptive and functional behaviors related to affective disturbances

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    First results from the AugerPrime Radio Detector

    Get PDF

    Update of the Offline Framework for AugerPrime

    Get PDF

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations

    Event-by-event reconstruction of the shower maximum XmaxX_{\mathrm{max}} with the Surface Detector of the Pierre Auger Observatory using deep learning

    Get PDF

    Reconstruction of Events Recorded with the Water-Cherenkov and Scintillator Surface Detectors of the Pierre Auger Observatory

    Get PDF

    Status and performance of the underground muon detector of the Pierre Auger Observatory

    Get PDF
    corecore