116 research outputs found

    New clinical and molecular insights on Barth syndrome.

    Get PDF
    BACKGROUND: Barth syndrome (BS) is an X-linked infantile-onset cardioskeletal disease characterized by cardiomyopathy, hypotonia, growth delay, neutropenia and 3-methylglutaconic aciduria. It is caused by mutations in the TAZ gene encoding tafazzin, a protein involved in the metabolism of cardiolipin, a mitochondrial-specific phospholipid involved in mitochondrial energy production. METHODS: Clinical, biochemical and molecular characterization of a group of six male patients suspected of having BS. Three patients presented early with severe metabolic decompensation including respiratory distress, oxygen desaturation and cardiomyopathy and died within the first year of life. The remaining three patients had cardiomyopathy, hypotonia and growth delay and are still alive. Cardiomyopathy was detected during pregnancy through a routine check-up in one patient. All patients exhibited 3-methylglutaconic aciduria and neutropenia, when tested and five of them also had lactic acidosis. RESULTS: We confirmed the diagnosis of BS with sequence analysis of the TAZ gene, and found five new mutations, c.641A>G p.His214Arg, c.284dupG (p.Thr96Aspfs*37), c.678_691del14 (p.Tyr227Trpfs*79), g.8009_16445del8437 and g.[9777_9814del38; 9911-?_14402del] and the known nonsense mutation c.367C>T (p.Arg123Term). The two gross rearrangements ablated TAZ exons 6 to 11 and probably originated by non-allelic homologous recombination and by Serial Replication Slippage (SRS), respectively. The identification of the breakpoints boundaries of the gross deletions allowed the direct detection of heterozygosity in carrier females. CONCLUSIONS: Lactic acidosis associated with 3-methylglutaconic aciduria is highly suggestive of BS, whilst the severity of the metabolic decompensation at disease onset should be considered for prognostic purposes. Mutation analysis of the TAZ gene is necessary for confirming the clinical and biochemical diagnosis in probands in order to identify heterozygous carriers and supporting prenatal diagnosis and genetic counseling

    8-Oxo-7,8-dihydro-2'-deoxyguanosine and other lesions along the coding strand of the exon 5 of the tumour suppressor gene P53 in a breast cancer case-control study.

    Get PDF
    The next-generation sequencing studies of breast cancer have reported that the tumour suppressor P53 (TP53) gene is mutated in more than 40% of the tumours. We studied the levels of oxidative lesions, including 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), along the coding strand of the exon 5 in breast cancer patients as well as in a reactive oxygen species (ROS)-attacked breast cancer cell line using the ligation-mediated polymerase chain reaction technique. We detected a significant ‘in vitro’ generation of 8-oxodG between the codons 163 and 175, corresponding to a TP53 region with high mutation prevalence, after treatment with xanthine plus xanthine oxidase, a ROS-generating system. Then, we evaluated the occurrence of oxidative lesions in the DNA-binding domain of the TP53 in the core needle biopsies of 113 of women undergoing breast investigation for diagnostic purpose. An increment of oxidative damage at the −G− residues into the codons 163 and 175 was found in the cancer cases as compared to the controls. We found significant associations with the pathological stage and the histological grade of tumours. As the major news of this study, this largest analysis of genomic footprinting of oxidative lesions at the TP53 sequence level to date provided a first roadmap describing the signatures of oxidative lesions in human breast cancer. Our results provide evidence that the generation of oxidative lesions at single nucleotide resolution is not an event highly stochastic, but causes a characteristic pattern of DNA lesions at the site of mutations in the TP53, suggesting causal relationship between oxidative DNA adducts and breast cancer

    Statistical properties of 12.2 GHz methanol masers associated with a complete sample of 6.7 GHz methanol masers

    Full text link
    We present definitive detection statistics for 12.2 GHz methanol masers towards a complete sample of 6.7 GHz methanol masers detected in the Methanol Multibeam survey south of declination -20 degrees. In total, we detect 250 12.2 GHz methanol masers towards 580 6.7 GHz methanol masers. This equates to a detection rate of 43.1%, which is lower than that of previous significant searches of comparable sensitivity. Both the velocity ranges and the flux densities of the target 6.7 GHz sources surpass that of their 12.2 GHz companion in almost all cases. 80 % of the detected 12.2 GHz methanol maser peaks are coincident in velocity with the 6.7 GHz maser peak. Our data support an evolutionary scenario whereby the 12.2 GHz sources are associated with a somewhat later evolutionary stage than the 6.7 GHz sources devoid of this transition. Furthermore, we find that the 6.7 GHz and 12.2 GHz methanol sources increase in luminosity as they evolve. In addition to this, evidence for an increase in velocity range with evolution is presented. This implies that it is not only the luminosity, but also the volume of gas conducive to the different maser transitions, that increases as the sources evolve. Comparison with GLIMPSE mid-infrared sources has revealed a coincidence rate between the locations of the 6.7 GHz methanol masers and GLIMPSE point sources similar to that achieved in previous studies. Overall, the properties of the GLIMPSE sources with and without 12.2 GHz counterparts are similar. There is a higher 12.2 GHz detection rate towards those 6.7 GHz methanol masers that are coincident with extended green objects.Comment: Accepted to ApJ March 2011. 28 pages, 9 figure

    12.2-GHz methanol maser MMB follow-up catalogue - II. Longitude range 186 to 330 degrees

    Full text link
    We present the second portion of a catalogue of 12.2-GHz methanol masers detected towards 6.7-GHz methanol masers observed in the unbiased Methanol Multibeam (MMB) Survey. Using the Parkes radio telescope we have targeted all 207 6.7-GHz methanol masers in the longitude range 186 to 330 degrees for 12.2-GHz counterparts. We report the detection of 83 12.2-GHz methanol masers, and one additional source which we suspect is thermal emission, equating to a detection rate of 40 per cent. Of the 83 maser detections, 39 are reported here for the first time. We discuss source properties, including variability and highlight a number of unusual sources. We present a list of 45 candidates that are likely to harbor methanol masers in the 107.0-GHz transition.Comment: Accepted MNRAS 19 July 201

    12.2-GHz methanol maser MMB follow-up catalogue - I. Longitude range 330 to 10 degrees

    Full text link
    We present a catalogue of 12.2-GHz methanol masers detected towards 6.7-GHz methanol masers observed in the unbiased Methanol Multibeam (MMB) survey in the longitude range 330\circ (through 360\circ) to 10\circ. This is the first portion of the catalogue which, when complete, will encompass all of the MMB detections. We report the detection of 184 12.2-GHz sources towards 400 6.7-GHz methanol maser targets, equating to a detection rate of 46 per cent. Of the 184 12.2-GHz detections, 117 are reported here for the first time. We draw attention to a number of 'special' sources, particularly those with emission at 12.2-GHz stronger than their 6.7-GHz counterpart and conclude that these unusual sources are not associated with a specific evolutionary stage.Comment: accepted to MNRAS 21 Dec 201

    Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI).

    Get PDF
    Abstract Background Despite progresses in neonatal care, the mortality and the incidence of neuro-motor disability after perinatal asphyxia have failed to show substantial improvements. In countries with a high level of perinatal care, the incidence of asphyxia responsible for moderate or severe encephalopathy is still 2–3 per 1000 term newborns. Recent trials have demonstrated that moderate hypothermia, started within 6 hours after birth and protracted for 72 hours, can significantly improve survival and reduce neurologic impairment in neonates with hypoxic-ischemic encephalopathy. It is not currently known whether neuroprotective drugs can further improve the beneficial effects of hypothermia. Topiramate has been proven to reduce brain injury in animal models of neonatal hypoxic ischemic encephalopathy. However, the association of mild hypothermia and topiramate treatment has never been studied in human newborns. The objective of this research project is to evaluate, through a multicenter randomized controlled trial, whether the efficacy of moderate hypothermia can be increased by concomitant topiramate treatment. Methods/Design Term newborns (gestational age ≥ 36 weeks and birth weight ≥ 1800 g) with precocious metabolic, clinical and electroencephalographic (EEG) signs of hypoxic-ischemic encephalopathy will be randomized, according to their EEG pattern, to receive topiramate added to standard treatment with moderate hypothermia or standard treatment alone. Topiramate will be administered at 10 mg/kg once a day for the first 3 days of life. Topiramate concentrations will be measured on serial dried blood spots. 64 participants will be recruited in the study. To evaluate the safety of topiramate administration, cardiac and respiratory parameters will be continuously monitored. Blood samplings will be performed to check renal, liver and metabolic balance. To evaluate the efficacy of topiramate, the neurologic outcome of enrolled newborns will be evaluated by serial neurologic and neuroradiologic examinations. Visual function will be evaluated by means of behavioural standardized tests. Discussion This pilot study will explore the possible therapeutic role of topiramate in combination with moderate hypothermia. Any favourable results of this research might open new perspectives about the reduction of cerebral damage in asphyxiated newborns. Trial registration Current Controlled Trials ISRCTN62175998; ClinicalTrials.gov Identifier NCT01241019; EudraCT Number 2010-018627-25</p

    Effective Caspase Inhibition Blocks Neutrophil Apoptosis and Reveals Mcl-1 as Both a Regulator and a Target of Neutrophil Caspase Activation

    Get PDF
    Human tissue inflammation is terminated, at least in part, by the death of inflammatory neutrophils by apoptosis. The regulation of this process is therefore key to understanding and manipulating inflammation resolution. Previous data have suggested that the short-lived pro-survival Bcl-2 family protein, Mcl-1, is instrumental in determining neutrophil lifespan. However, Mcl-1 can be cleaved following caspase activity, and the possibility therefore remains that the observed fall in Mcl-1 levels is due to caspase activity downstream of caspase activation, rather than being a key event initiating apoptosis in human neutrophils
    • …
    corecore