14 research outputs found

    Novel HIV-1 Knockdown Targets Identified by an Enriched Kinases/Phosphatases shRNA Library Using a Long-Term Iterative Screen in Jurkat T-Cells

    Get PDF
    HIV-1 is a complex retrovirus that uses host machinery to promote its replication. Understanding cellular proteins involved in the multistep process of HIV-1 infection may result in the discovery of more adapted and effective therapeutic targets. Kinases and phosphatases are a druggable class of proteins critically involved in regulation of signal pathways of eukaryotic cells. Here, we focused on the discovery of kinases and phosphatases that are essential for HIV-1 replication but dispensable for cell viability. We performed an iterative screen in Jurkat T-cells with a short-hairpin-RNA (shRNA) library highly enriched for human kinases and phosphatases. We identified 14 new proteins essential for HIV-1 replication that do not affect cell viability. These proteins are described to be involved in MAPK, JNK and ERK pathways, vesicular traffic and DNA repair. Moreover, we show that the proteins under study are important in an early step of HIV-1 infection before viral integration, whereas some of them affect viral transcription/translation. This study brings new insights for the complex interplay of HIV-1/host cell and opens new possibilities for antiviral strategies

    Rab27a and Rab27b control different steps of the exosome secretion pathway

    Get PDF
    Exosomes are secreted membrane vesicles that share structural and biochemical characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes could be involved in intercellular communication and in the pathogenesis of infectious and degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, however, poorly understood. Using an RNA interference (RNAi) screen, we identified five Rab GTPases that promote exosome secretion in HeLa cells. Among these, Rab27a and Rab27b were found to function in MVE docking at the plasma membrane. The size of MVEs was strongly increased by Rab27a silencing, whereas MVEs were redistributed towards the perinuclear region upon Rab27b silencing. Thus, the two Rab27 isoforms have different roles in the exosomal pathway. In addition, silencing two known Rab27 effectors, Slp4 (also known as SYTL4, synaptotagmin-like 4) and Slac2b (also known as EXPH5, exophilin 5), inhibited exosome secretion and phenocopied silencing of Rab27a and Rab27b, respectively. Our results therefore strengthen the link between MVEs and exosomes, and introduce ways of manipulating exosome secretion in vivo

    Comparative and Functional Genomics The cadherin superfamily in Anopheles gambiae: a comparative study with Drosophila melanogaster

    No full text
    Abstract The cadherin superfamily is a diverse and multifunctional group of proteins with extensive representation across genomes of phylogenetically distant species that is involved in cell-cell communication and adhesion. The mosquito Anopheles gambiae is an emerging model organism for the study of innate immunity and host-pathogen interactions, where the malaria parasite induces a profound rearrangement of the actin cytoskeleton at critical stages of infection. We have used bioinformatics tools to retrieve present sequence knowledge about the complete repertoire of cadherins in A. gambiae and compared it to that of the fruit fly, Drosophila melanogaster. In A. gambiae, we have identified 43 genes coding for cadherin extracellular domains that were re-annotated to 38 genes and represent an expansion of this gene family in comparison to other invertebrate organisms. The majority of Drosophila cadherins show a 1 : 1 Anopheles orthologue, but we have observed a remarkable expansion in some groups in A. gambiae, such as N-cadherins, that were recently shown to have a role in the olfactory system of the fruit fly. In vivo dsRNA silencing of overrepresented genes in A. gambiae and other genes showing expression at critical tissues for parasite infection will likely advance our understanding of the problems of host preference and host-pathogen interactions in this mosquito species

    Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells.

    Get PDF
    International audienceAntigen (Ag) crosspresentation by dendritic cells (DCs) involves the presentation of internalized Ags on MHC class I molecules to initiate CD8+ T cell-mediated immunity in response to certain pathogens and tumor cells. Here, we identify the SNARE Sec22b as a specific regulator of Ag crosspresentation. Sec22b localizes to the ER-Golgi intermediate compartment (ERGIC) and pairs to the plasma membrane SNARE syntaxin 4, which is present in phagosomes (Phgs). Depletion of Sec22b inhibits the recruitment of ER-resident proteins to Phgs and to the vacuole containing the Toxoplasma gondii parasite. In Sec22b-deficient DCs, crosspresentation is compromised after Ag phagocytosis or endocytosis and after invasion by T. gondii. Sec22b silencing inhibited Ag export to the cytosol and increased phagosomal degradation by accelerating lysosomal recruitment. Our findings provide insight into an intracellular traffic pathway required for crosspresentation and show that Sec22b-dependent recruitment of ER proteins to Phgs critically influences phagosomal functions in DCs

    The MHC class Ib protein ULBP1 is a nonredundant determinant of leukemia/lymphoma susceptibility to γδ T-cell cytotoxicity

    Get PDF
    © 2010 by The American Society of HematologyOn the path to successful immunotherapy of hematopoietic tumors, γδ T cells offer great promise because of their human leukocyte antigen (HLA)–unrestricted targeting of a wide variety of leukemias/lymphomas. However, the molecular mechanisms underlying lymphoma recognition by γδ T cells remain unclear. Here we show that the expression levels of UL16-binding protein 1 (ULBP1) determine lymphoma susceptibility to γδ T cell–mediated cytolysis. Consistent with this, blockade of NKG2D, the receptor for ULBP1 expressed on all Vγ9+ T cells, significantly inhibits lymphoma cell killing. Specific loss-of-function studies demonstrate that the role of ULBP1 is nonredundant, highlighting a thus far unique physiologic relevance for tumor recognition by T cells. Importantly, we observed a very wide spectrum of ULBP1 expression levels in primary biopsies obtained from lymphoma and leukemia patients. We suggest this will impact on the responsiveness to γδ T cell–based immunotherapy, and therefore propose ULBP1 to be used as a leukemia/lymphoma biomarker in upcoming clinical trials.This work was distinguished with the Pfizer Award for ClinicalResearch 2009. This work was further supported by Fundação para a Ciência e Tecnologia (PTDC/SAU-MII/71662/2006) and Fundação Calouste Gulbenkian (SDH Oncologia 2008; Projecto 99293). L.F.M. is a Young Investigator from the Human Frontier Science Program and was supported by Fundação Luso-Americana para o Desenvolvimento and Fundação para a Ciência e Tecnologia (FCT; PTDC/SAU-MII/69280/2006 and PTDC/SAU-MII/78333/2006). T.L. and D.V.C. received PhD fellowships (47342/2008 and 37898/2007) from FCT
    corecore