25 research outputs found
Estudio de factibilidad para la creación de un centro de estimulación adecuada en la ciudad de Tunja.
142 Páginas.Esta investigación se enmarca en el ámbito pedagógico y financiero, asociados a la factibilidad de la creación de un centro de estimulación adecuada en la ciudad de Tunja. Estimular el desarrollo de las distintas dimensiones en niños de 0 a 5 años, es brindar herramientas adecuadas para alcanzar las competencias requeridas para la futura vida escolar a la que se enfrentaran los niños y las niñas en el mundo actual. Los resultados arrojados por el presente estudio de factibilidad, evidencian la viabilidad del proyecto, encontrando un mercado virgen y una oportunidad de negocio que a partir del posicionamiento de la marca permitirá ser líder en el mercado
Decreased levels of serum glutathione peroxidase 3 are associated with papillary serous ovarian cancer and disease progression
<p>Abstract</p> <p>Background</p> <p>Glutathione peroxidase 3 (GPX3) is a selenocysteine-containing antioxidant enzyme that reacts with hydrogen peroxide and soluble fatty acid hydroperoxides, thereby helping to maintain redox balance within cells. Serum levels of GPX3 have been found to be reduced in various cancers including prostrate, thyroid, colorectal, breast and gastric cancers. Intriguingly, GPX3 has been reported to be upregulated in clear cell ovarian cancer tissues and thus may have implications in chemotherapeutic resistance. Since clear cell and serous subtypes of ovarian cancer represent two distinct disease entities, the aim of this study was to determine GPX3 levels in serous ovarian cancer patients and establish its potential as a biomarker for detection and/or surveillance of papillary serous ovarian cancer, the most frequent form of ovarian tumors in women.</p> <p>Patients and Methods</p> <p>Serum was obtained from 66 patients (median age: 62 years, range: 22-89) prior to surgery and 65 controls with a comparable age-range (median age: 53 years, range: 25-83). ELISA was used to determine the levels of serum GPX3. The Mann Whitney <it>U </it>test was performed to determine statistical significance between the levels of serum GPX3 in patients and controls.</p> <p>Results</p> <p>Serum levels of GPX3 were found to be significantly lower in patients than controls (p = 1 × 10<sup>-2</sup>). Furthermore, this was found to be dependent on the stage of disease. While levels in early stage (I/II) patients showed no significant difference when compared to controls, there was a significant reduction in late stage (III/IV, p = 9 × 10<sup>-4</sup>) and recurrent (p = 1 × 10<sup>-2</sup>) patients. There was a statistically significant reduction in levels of GPX3 between early and late stage (p = 5 × 10<sup>-4</sup>) as well as early and recurrent (p = 1 × 10<sup>-2</sup>) patients. Comparison of women and controls stratified to include only women at or above 50 years of age shows that the same trends were maintained and the differences became more statistically significant.</p> <p>Conclusions</p> <p>Serum GPX3 levels are decreased in women with papillary serous ovarian cancer in a stage-dependent manner and also decreased in women with disease recurrence. Whether this decrease represents a general feature in response to the disease or a link to the progression of the cancer is unknown. Understanding this relationship may have clinical and therapeutic consequences for women with papillary serous adenocarcinoma.</p
Mutations in Diaphyseal Medullary Stenosis- Malignant Fibrous Histiocytoma Related Gene MTAP Affects Expression of Splice Variants SV2 and SV5
Diaphyseal Medullary Stenosis- Malignant Fibrous Histiocytoma (DMS-MFH) is a rare autosomal dominant bone syndrome. Thirty-five percent of patients diagnosed with DMS-MFH are at risk of developing a bone sarcoma, malignant fibrous histiocytoma (MFH). Symptoms of this bone disease include bone infarctions, bone pain, leg weakness, and the development of early-onset cataracts. Recently, studies in our laboratory have shown that either of two inherited mutations, IVS8 (-2) A>G or Ex9 (+72) A>G in the MTAP gene locus, results in the development of DMS-MFH. These mutations specifically target the methylthioadenosine phosphorylase (MTAP) gene, located on chromosome 9p21.3. Our laboratory has now shown that the MTAP gene encodes six alternative splicing isoforms
Personalized Ovarian Cancer Disease Surveillance and Detection of Candidate Therapeutic Drug Target in Circulating Tumor DNA
Retrospective studies have demonstrated that nearly 50% of patients with ovarian cancer with normal cancer antigen 125 (CA125) levels have persistent disease; however, prospectively distinguishing between patients is currently impossible. Here, we demonstrate that for one patient, with the first reported fibroblast growth factor receptor 2 (FGFR2) fusion transcript in ovarian cancer, circulating tumor DNA (ctDNA) is a more sensitive and specific biomarker than CA125, and it can also inform on a candidate therapeutic. For a 4-year period, during which the patient underwent primary debulking surgery and chemotherapy, tumor recurrences, and multiple chemotherapeutic regimens, blood samples were longitudinally collected and stored. Whereas postsurgical CA125 levels were elevated only three times for 28 measurements, the FGFR2 fusion ctDNA biomarker was readily detectable by quantitative real-time reverse transcription-polymerase chain reaction (PCR) in all of these same blood samples and in the tumor recurrences. Given the persistence of the FGFR2 fusion, we treated tumor cells derived from this patient and others with the FGFR2 inhibitor BGJ398. Only tumor cells derived from this patient were sensitive to FGFR2 inhibitor treatment. Using the same methodologic approach, we demonstrate in a second patient with a different fusion that PCR and agarose gel electrophoresis can also be used to identify tumor-specific DNA in the circulation. Taken together, we demonstrate that a relatively inexpensive, PCR-based ctDNA surveillance assay can outperform CA125 in identifying occult disease
Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival In Gynecologic Cancers.
BACKGROUND:High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their primary therapy, nearly half will develop disease recurrence within 18 months and the majority will die from disease recurrence within 5 years. Moreover, no currently used biomarkers or imaging studies can predict outcome following initial treatment. Circulating tumor DNA (ctDNA) represents a theoretically powerful biomarker for detecting otherwise occult disease. We therefore explored the use of personalized ctDNA markers as both a surveillance and prognostic biomarker in gynecologic cancers and compared this to current FDA-approved surveillance tools. METHODS AND FINDINGS:Tumor and serum samples were collected at time of surgery and then throughout treatment course for 44 patients with gynecologic cancers, representing 22 ovarian cancer cases, 17 uterine cancer cases, one peritoneal, three fallopian tube, and one patient with synchronous fallopian tube and uterine cancer. Patient/tumor-specific mutations were identified using whole-exome and targeted gene sequencing and ctDNA levels quantified using droplet digital PCR. CtDNA was detected in 93.8% of patients for whom probes were designed and levels were highly correlated with CA-125 serum and computed tomography (CT) scanning results. In six patients, ctDNA detected the presence of cancer even when CT scanning was negative and, on average, had a predictive lead time of seven months over CT imaging. Most notably, undetectable levels of ctDNA at six months following initial treatment was associated with markedly improved progression free and overall survival. CONCLUSIONS:Detection of residual disease in gynecologic, and indeed all cancers, represents a diagnostic dilemma and a potential critical inflection point in precision medicine. This study suggests that the use of personalized ctDNA biomarkers in gynecologic cancers can identify the presence of residual tumor while also more dynamically predicting response to treatment relative to currently used serum and imaging studies. Of particular interest, ctDNA was an independent predictor of survival in patients with ovarian and endometrial cancers. Earlier recognition of disease persistence and/or recurrence and the ability to stratify into better and worse outcome groups through ctDNA surveillance may open the window for improved survival and quality and life in these cancers
Recommended from our members
Primate genome gain and loss: a bone dysplasia, muscular dystrophy, and bone cancer syndrome resulting from mutated retroviral-derived MTAP transcripts.
Diaphyseal medullary stenosis with malignant fibrous histiocytoma (DMS-MFH) is an autosomal-dominant syndrome characterized by bone dysplasia, myopathy, and bone cancer. We previously mapped the DMS-MFH tumor-suppressing-gene locus to chromosomal region 9p21-22 but failed to identify mutations in known genes in this region. We now demonstrate that DMS-MFH results from mutations in the most proximal of three previously uncharacterized terminal exons of the gene encoding methylthioadenosine phosphorylase, MTAP. Intriguingly, two of these MTAP exons arose from early and independent retroviral-integration events in primate genomes at least 40 million years ago, and since then, their genomic integration has gained a functional role. MTAP is a ubiquitously expressed homotrimeric-subunit enzyme critical to polyamine metabolism and adenine and methionine salvage pathways and was believed to be encoded as a single transcript from the eight previously described exons. Six distinct retroviral-sequence-containing MTAP isoforms, each of which can physically interact with archetype MTAP, have been identified. The disease-causing mutations occur within one of these retroviral-derived exons and result in exon skipping and dysregulated alternative splicing of all MTAP isoforms. Our results identify a gene involved in the development of bone sarcoma, provide evidence of the primate-specific evolution of certain parts of an existing gene, and demonstrate that mutations in parts of this gene can result in human disease despite its relatively recent origin
Genomic Analysis of Uterine Lavage Fluid Detects Early Endometrial Cancers and Reveals a Prevalent Landscape of Driver Mutations in Women without Histopathologic Evidence of Cancer: A Prospective Cross-Sectional Study.
BACKGROUND:Endometrial cancer is the most common gynecologic malignancy, and its incidence and associated mortality are increasing. Despite the immediate need to detect these cancers at an earlier stage, there is no effective screening methodology or protocol for endometrial cancer. The comprehensive, genomics-based analysis of endometrial cancer by The Cancer Genome Atlas (TCGA) revealed many of the molecular defects that define this cancer. Based on these cancer genome results, and in a prospective study, we hypothesized that the use of ultra-deep, targeted gene sequencing could detect somatic mutations in uterine lavage fluid obtained from women undergoing hysteroscopy as a means of molecular screening and diagnosis. METHODS AND FINDINGS:Uterine lavage and paired blood samples were collected and analyzed from 107 consecutive patients who were undergoing hysteroscopy and curettage for diagnostic evaluation from this single-institution study. The lavage fluid was separated into cellular and acellular fractions by centrifugation. Cellular and cell-free DNA (cfDNA) were isolated from each lavage. Two targeted next-generation sequencing (NGS) gene panels, one composed of 56 genes and the other of 12 genes, were used for ultra-deep sequencing. To rule out potential NGS-based errors, orthogonal mutation validation was performed using digital PCR and Sanger sequencing. Seven patients were diagnosed with endometrial cancer based on classic histopathologic analysis. Six of these patients had stage IA cancer, and one of these cancers was only detectable as a microscopic focus within a polyp. All seven patients were found to have significant cancer-associated gene mutations in both cell pellet and cfDNA fractions. In the four patients in whom adequate tumor sample was available, all tumor mutations above a specific allele fraction were present in the uterine lavage DNA samples. Mutations originally only detected in lavage fluid fractions were later confirmed to be present in tumor but at allele fractions significantly less than 1%. Of the remaining 95 patients diagnosed with benign or non-cancer pathology, 44 had no significant cancer mutations detected. Intriguingly, 51 patients without histopathologic evidence of cancer had relatively high allele fraction (1.0%-30.4%), cancer-associated mutations. Participants with detected driver and potential driver mutations were significantly older (mean age mutated = 57.96, 95% confidence interval [CI]: 3.30-∞, mean age no mutations = 50.35; p-value = 0.002; Benjamini-Hochberg [BH] adjusted p-value = 0.015) and more likely to be post-menopausal (p-value = 0.004; BH-adjusted p-value = 0.015) than those without these mutations. No associations were detected between mutation status and race/ethnicity, body mass index, diabetes, parity, and smoking status. Long-term follow-up was not presently available in this prospective study for those women without histopathologic evidence of cancer. CONCLUSIONS:Using ultra-deep NGS, we identified somatic mutations in DNA extracted both from cell pellets and a never previously reported cfDNA fraction from the uterine lavage. Using our targeted sequencing approach, endometrial driver mutations were identified in all seven women who received a cancer diagnosis based on classic histopathology of tissue curettage obtained at the time of hysteroscopy. In addition, relatively high allele fraction driver mutations were identified in the lavage fluid of approximately half of the women without a cancer diagnosis. Increasing age and post-menopausal status were associated with the presence of these cancer-associated mutations, suggesting the prevalent existence of a premalignant landscape in women without clinical evidence of cancer. Given that a uterine lavage can be easily and quickly performed even outside of the operating room and in a physician's office-based setting, our findings suggest the future possibility of this approach for screening women for the earliest stages of endometrial cancer. However, our findings suggest that further insight into development of cancer or its interruption are needed before translation to the clinic
Genomic Analysis of Uterine Lavage Fluid Detects Early Endometrial Cancers and Reveals a Prevalent Landscape of Driver Mutations in Women without Histopathologic Evidence of Cancer: A Prospective Cross-Sectional Study.
BACKGROUND:Endometrial cancer is the most common gynecologic malignancy, and its incidence and associated mortality are increasing. Despite the immediate need to detect these cancers at an earlier stage, there is no effective screening methodology or protocol for endometrial cancer. The comprehensive, genomics-based analysis of endometrial cancer by The Cancer Genome Atlas (TCGA) revealed many of the molecular defects that define this cancer. Based on these cancer genome results, and in a prospective study, we hypothesized that the use of ultra-deep, targeted gene sequencing could detect somatic mutations in uterine lavage fluid obtained from women undergoing hysteroscopy as a means of molecular screening and diagnosis. METHODS AND FINDINGS:Uterine lavage and paired blood samples were collected and analyzed from 107 consecutive patients who were undergoing hysteroscopy and curettage for diagnostic evaluation from this single-institution study. The lavage fluid was separated into cellular and acellular fractions by centrifugation. Cellular and cell-free DNA (cfDNA) were isolated from each lavage. Two targeted next-generation sequencing (NGS) gene panels, one composed of 56 genes and the other of 12 genes, were used for ultra-deep sequencing. To rule out potential NGS-based errors, orthogonal mutation validation was performed using digital PCR and Sanger sequencing. Seven patients were diagnosed with endometrial cancer based on classic histopathologic analysis. Six of these patients had stage IA cancer, and one of these cancers was only detectable as a microscopic focus within a polyp. All seven patients were found to have significant cancer-associated gene mutations in both cell pellet and cfDNA fractions. In the four patients in whom adequate tumor sample was available, all tumor mutations above a specific allele fraction were present in the uterine lavage DNA samples. Mutations originally only detected in lavage fluid fractions were later confirmed to be present in tumor but at allele fractions significantly less than 1%. Of the remaining 95 patients diagnosed with benign or non-cancer pathology, 44 had no significant cancer mutations detected. Intriguingly, 51 patients without histopathologic evidence of cancer had relatively high allele fraction (1.0%-30.4%), cancer-associated mutations. Participants with detected driver and potential driver mutations were significantly older (mean age mutated = 57.96, 95% confidence interval [CI]: 3.30-∞, mean age no mutations = 50.35; p-value = 0.002; Benjamini-Hochberg [BH] adjusted p-value = 0.015) and more likely to be post-menopausal (p-value = 0.004; BH-adjusted p-value = 0.015) than those without these mutations. No associations were detected between mutation status and race/ethnicity, body mass index, diabetes, parity, and smoking status. Long-term follow-up was not presently available in this prospective study for those women without histopathologic evidence of cancer. CONCLUSIONS:Using ultra-deep NGS, we identified somatic mutations in DNA extracted both from cell pellets and a never previously reported cfDNA fraction from the uterine lavage. Using our targeted sequencing approach, endometrial driver mutations were identified in all seven women who received a cancer diagnosis based on classic histopathology of tissue curettage obtained at the time of hysteroscopy. In addition, relatively high allele fraction driver mutations were identified in the lavage fluid of approximately half of the women without a cancer diagnosis. Increasing age and post-menopausal status were associated with the presence of these cancer-associated mutations, suggesting the prevalent existence of a premalignant landscape in women without clinical evidence of cancer. Given that a uterine lavage can be easily and quickly performed even outside of the operating room and in a physician's office-based setting, our findings suggest the future possibility of this approach for screening women for the earliest stages of endometrial cancer. However, our findings suggest that further insight into development of cancer or its interruption are needed before translation to the clinic