135 research outputs found

    Ligand-based drug repurposing strategy identified SARS-CoV-2 RNA G-quadruplex binders

    Get PDF
    The single-stranded RNA genome of SARS-CoV-2 contains some G-quadruplex-forming G-rich elements which are putative drug targets. Here, we performed a ligand-based pharmacophore virtual screening of FDA approved drugs to find candidates targeting such RNA structures. Further in silico and in vitro assays identified three drugs as emerging SARS-CoV-2 RNA G-quadruplex binders

    Synthesis and Biological Evaluation of a New Structural Simplified Analogue of cADPR, a Calcium-Mobilizing Secondary Messenger Firstly Isolated from Sea Urchin Eggs

    Get PDF
    Herein, we reported on the synthesis of cpIPP, which is a new structurally-reduced analogue of cyclic ADP-ribose (cADPR), a potent Ca2+-releasing secondary messenger that was firstly isolated from sea urchin eggs extracts. To obtain cpIPP the "northern" ribose of cADPR was replaced by a pentyl chain and the pyrophosphate moiety by a phophono-phosphate anhydride. The effect of the presence of the new phosphono-phosphate bridge on the intracellular Ca2+release induced by cpIPP was assessed in PC12 neuronal cells in comparison with the effect of the pyrophosphate bridge of the structurally related cyclic N1-butylinosine diphosphate analogue (cbIDP), which was previously synthesized in our laboratories, and with that of the linear precursor of cpIPP, which, unexpectedly, revealed to be the only one provided with Ca2+release properties

    Peptide Nucleic Acids as miRNA Target Protectors for the Treatment of Cystic Fibrosis

    Get PDF
    Cystic Fibrosis (CF) is one of the most common life shortening conditions in Caucasians. CF is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene which result in reduced or altered CFTR functionality. Several microRNAs (miRNAs) downregulate the expression of CFTR, thus causing or exacerbating the symptoms of CF. In this context, the design of anti-miRNA agents represents a valid functional tool, but its translation to the clinic might lead to unpredictable side effects because of the interference with the expression of other genes regulated by the same miRNAs. Herein, for the first time, is proposed the use of peptide nucleic acids (PNAs) to protect specific sequences in the 3'UTR (untranslated region) of the CFTR messenger RNA (mRNA) by action of miRNAs. Two PNAs (7 and 13 bases long) carrying the tetrapeptide Gly-SerP-SerP-Gly at their C-end, fully complementary to the 3'UTR sequence recognized by miR-509-3p, have been synthesized and the structural features of target PNA/RNA heteroduplexes have been investigated by spectroscopic and molecular dynamics studies. The co-transfection of the pLuc-CFTR-3´UTR vector with different combinations of PNAs, miR-509-3p, and controls in A549 cells demonstrated the ability of the longer PNA to rescue the luciferase activity by up to 70% of the control, thus supporting the use of suitable PNAs to counteract the reduction in the CFTR expression

    Molecular Basis for Non-Covalent, Non-Competitive FAAH Inhibition

    Get PDF
    Fatty acid amide hydrolase (FAAH) plays a key role in the control of cannabinoid signaling and it represents a promising therapeutic strategy for the treatment of a wide range of diseases, including neuropathic pain and chronic inflammation. Starting from kinetics experiments carried out in our previous work for the most potent inhibitor 2-amino-3-chloropyridine amide (TPA14), we have investigated its non-competitive mechanism of action using molecular dynamics, thermodynamic integration and QM-MM/GBSA calculations. The computational studies highlighted the impact of mutations on the receptor binding pockets and elucidated the molecular basis of the non-competitive inhibition mechanism of TPA14, which prevents the endocannabinoid anandamide (AEA) from reaching its pro-active conformation. Our study provides a rationale for the design of non-competitive potent FAAH inhibitors for the treatment of neuropathic pain and chronic inflammation

    Design, synthesis and <i>in vitro</i> and <i>in vivo</i> biological evaluation of flurbiprofen amides as new fatty acid amide hydrolase/cyclooxygenase-2 dual inhibitory potential analgesic agents

    Get PDF
    Compounds combining dual inhibitory action against FAAH and cyclooxygenase (COX) may be potentially useful analgesics. Here, we describe a novel flurbiprofen analogue, N-(3-bromopyridin-2-yl)-2-(2-fluoro-(1,1'-biphenyl)-4-yl)propanamide (Flu-AM4). The compound is a competitive, reversible inhibitor of FAAH with a Ki value of 13 nM and which inhibits COX activity in a substrate-selective manner. Molecular modelling suggested that Flu-AM4 optimally fits a hydrophobic pocket in the ACB region of FAAH, and binds to COX-2 similarly to flurbiprofen. In vivo studies indicated that at a dose of 10 mg/kg, Flu-AM4 was active in models of prolonged (formalin) and neuropathic (chronic constriction injury) pain and reduced the spinal expression of iNOS, COX-2, and NFκB in the neuropathic model. Thus, the present study identifies Flu-AM4 as a dual-action FAAH/substrate-selective COX inhibitor with anti-inflammatory and analgesic activity in animal pain models. These findings underscore the potential usefulness of such dual-action compounds

    Discovery of Bile Acid Derivatives as Potent ACE2 Activators by Virtual Screening and Essential Dynamics

    Get PDF
    The angiotensin-converting enzyme II (ACE2) is a key molecular player in the regulation of vessel contraction, inflammation, and reduction of oxidative stress. In addition, ACE2 has assumed a prominent role in the fight against the COVID-19 pandemic-causing virus SARS-CoV-2, as it is the very first receptor in the host of the viral spike protein. The binding of the spike protein to ACE2 triggers a cascade of events that eventually leads the virus to enter the host cell and initiate its life cycle. At the same time, SARS-CoV-2 infection downregulates ACE2 expression especially in the lung, altering the biochemical signals regulated by the enzyme and contributing to the poor clinical prognosis characterizing the late stage of the COVID-19 disease. Despite its important biological role, a very limited number of ACE2 activators are known. Here, using a combined in silico and experimental approach, we show that ursodeoxycholic acid (UDCA) derivatives work as ACE2 activators. In detail, we have identified two potent ACE2 ligands, BAR107 and BAR708, through a docking virtual screening campaign and elucidated their mechanism of action from essential dynamics of the enzyme observed during microsecond molecular dynamics calculations. The in silico results were confirmed by in vitro pharmacological assays with the newly identified compounds showing ACE2 activity comparable to that of DIZE, the most potent ACE2 activator known so far. Our work provides structural insight into ACE2/ligand-binding interaction useful for the design of compounds with therapeutic potential against SARS-CoV-2 infection, inflammation, and other ACE2-related diseases

    Structural model of the hUbA1-UbcH10 quaternary complex: In silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin

    Get PDF
    UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders

    Structural Model of the hUbA1-UbcH10 Quaternary Complex: In Silico and Experimental Analysis of the Protein-Protein Interactions between E1, E2 and Ubiquitin

    Get PDF
    UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1–E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders

    Discovery of a Potent and Orally Active Dual GPBAR1/CysLT1R Modulator for the Treatment of Metabolic Fatty Liver Disease

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two highly prevalent human diseases caused by excessive fat deposition in the liver. Although multiple approaches have been suggested, NAFLD/NASH remains an unmet clinical need. Here, we report the discovery of a novel class of hybrid molecules designed to function as cysteinyl leukotriene receptor 1 (CysLT1R) antagonists and G protein bile acid receptor 1 (GPBAR1/TGR5) agonists for the treatment of NAFLD/NASH. The most potent of these compounds generated by harnessing the scaffold of the previously described CystLT1R antagonists showed efficacy in reversing liver histopathology features in a preclinical model of NASH, reshaping the liver transcriptome and the lipid and energy metabolism in the liver and adipose tissues. In summary, the present study described a novel orally active dual CysLT1R antagonist/GPBAR1 agonist that effectively protects against the development of NAFLD/NASH, showing promise for further development

    Molecular and Structural Aspects of Clinically Relevant Mutations of SARS-CoV-2 RNA-Dependent RNA Polymerase in Remdesivir-Treated Patients

    Get PDF
    (1) Background: SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is a promising therapeutic target to fight COVID-19, and many RdRp inhibitors nucleotide/nucleoside analogs, such as remdesivir, have been identified or are in clinical studies. However, the appearance of resistant mutations could reduce their efficacy. In the present work, we structurally evaluated the impact of RdRp mutations found at baseline in 39 patients treated with remdesivir and associated with a different degree of antiviral response in vivo. (2) Methods: A refined bioinformatics approach was applied to assign SARS-CoV-2 clade and lineage, and to define RdRp mutational profiles. In line with such a method, the same mutations were built and analyzed by combining docking and thermodynamics evaluations with both molecular dynamics and representative pharmacophore models. (3) Results: Clinical studies revealed that patients bearing the most prevalent triple mutant P323L+671S+M899I, which was present in 41% of patients, or the more complex mutational profile P323L+G671S+L838I+D738Y+K91E, which was found with a prevalence of 2.6%, showed a delayed reduced response to remdesivir, as confirmed by the increase in SARS-CoV-2 viral load and by a reduced theoretical binding affinity versus RdRp ( Delta Gbind(WT) = 122.70 kcal/mol; Delta Gbind(P323L+ 671S+M899I) = 84.78 kcal/mol; Delta Gbind(P323L+ G671S+L838I+D738Y+K91E) = 96.74 kcal/mol). Combined computational approaches helped to rationalize such clinical observations, offering a mechanistic understanding of the allosteric effects of mutants on the global motions of the viral RNA synthesis machine and in the changes of the interactions patterns of remdesivir during its binding
    • …
    corecore