110 research outputs found

    Piezoelectric mimicry of flexoelectricity

    Get PDF
    The origin of "giant" flexoelectricity, orders of magnitude larger than theoretically predicted, yet frequently observed, is under intense scrutiny. There is mounting evidence correlating giant flexoelectric-like effects with parasitic piezoelectricity, but it is not clear how piezoelectricity (polarization generated by strain) manages to imitate flexoelectricity (polarization generated by strain gradient) in typical beam-bending experiments, since in a bent beam the net strain is zero. In addition, and contrary to flexoelectricity, piezoelectricity changes sign under space inversion, and this criterion should be able to distinguish the two effects and yet "giant" flexoelectricity is insensitive to space inversion, seemingly contradicting a piezoelectric origin. Here we show that, if a piezoelectric material has its piezoelectric coefficient be asymmetrically distributed across the sample, it will generate a bending-induced polarization impossible to distinguish from true flexoelectricity even by inverting the sample. The effective flexoelectric coefficient caused by piezoelectricity is functionally identical to, and often larger than, intrinsic flexoelectricity: the calculations show that, for standard perovskite ferroelectrics, even a tiny gradient of piezoelectricity (1% variation of piezoelectric coefficient across 1 mm) is sufficient to yield a giant effective flexoelectric coefficient of 1 μ\muC/m, three orders of magnitude larger than the intrinsic expectation value

    The emancipation of flexoelectricity

    Get PDF
    Consider the following: writing (and reading) ferroelectric memories without applying voltage;1-3 piezoelectric-like transduction without piezoelectric materials;4-6 bone remodeling7 and mammalian hearing;8,9 asymmetric fracture toughness;10 and bulk photovoltaic effects in non-polar materials.11 What do these apparently disparate phenomena have in common? Flexoelectricity..

    Origin Of the enhanced flexoelectricity of relaxor ferroelectrics

    Get PDF
    We have measured the bending-induced polarization of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals with compositions at the relaxor-ferroelectric phase boundary. The crystals display very large flexoelectricity, with flexocoupling coefficients an order of magnitude bigger than the theoretical upper limit set by the theories of Kogan and Tagantsev. This enhancement persists in the paraphrase up to a temperature T* that coincides with the start of elastic softening in the crystals. Analysis of the temperature dependence and cross-correlation between flexoelectric, dielectric and elastic properties indicates that the large bendinginduced polarization of relaxor ferroelectrics is not caused by intrinsically giant flexoelectricity, but by the reorientation of polar nanotwins that become ferroelastically active below T*

    Fracture toughening and toughness asymmetry induced by flexoelectricity

    Get PDF
    Cracks generate the largest strain gradients that any material can withstand. Flexoelectricity (coupling between strain gradient and polarization) must therefore play an important role in fracture physics. Here we use a self-consistent continuum model to evidence two consequences of flexoelectricity in fracture: the resistance to fracture increases as structural size decreases, and it becomes asymmetric with respect to the sign of polarization. The latter phenomenon manifests itself in a range of intermediate sizes where piezo- and flexoelectricity compete. In BaTiO3 at room temperature, this range spans from 0.1 to 50 nm, a typical thickness range for epitaxial ferroelectric thin films

    Investigation of The Cellular Response to Bone Fractures : Evidence for Flexoelectricity

    Get PDF
    The recent discovery of bone flexoelectricity (strain-gradient-induced electrical polarization) suggests that flexoelectricity could have physiological effects in bones, and specifically near bone fractures, where flexoelectricity is theoretically highest. Here, we report a cytological study of the interaction between crack stress and bone cells. We have cultured MC3T3-E1 mouse osteoblastic cells in biomimetic microcracked hydroxyapatite substrates, differentiated into osteocytes and applied a strain gradient to the samples. The results show a strong apoptotic cellular response, whereby mechanical stimulation causes those cells near the crack to die, as indicated by live-dead and caspase staining. In addition, analysis two weeks post-stimulation shows increased cell attachment and mineralization around microcracks and a higher expression of osteocalcin -an osteogenic protein known to be promoted by physical exercise. The results are consistent with flexoelectricity playing at least two different roles in bone remodelling: apoptotic trigger of the repair protocol, and electro-stimulant of the bone-building activity of osteoblasts

    Effect of humidity on the writing speed and domain wall dynamics of ferroelectric domains

    Get PDF
    Altres ajuts: the ICN2 was funded by the CERCA programme / Generalitat de Catalunya.The switching dynamics of ferroelectric polarization under electric fields depends on the availability of screening charges in order to stabilize the switched polarization. In ferroelectrics, thin films with exposed surfaces investigated by piezoresponse force microscopy (PFM), the main source of external screening charges is the atmosphere and the water neck, and therefore relative humidity (RH) plays a major role. Here, it is shown how the dynamic writing of domains in BaTiO thin films changes by varying scanning speeds in the range of RH between 2.5% and 60%. The measurements reveal that the critical speed for domain writing, which is defined as the highest speed at which electrical writing of a continuous stripe domain is possible, increases non-monotonically with RH. Additionally, the width of line domains shows a power law dependence on the writing speed, with a growth rate coefficient decreasing with RH. The size of the written domains at a constant speed as well as the creep-factor μ describing the domain wall kinetics follow the behavior of water adsorption represented by the adsorption isotherm, indicating that the screening mechanism dominating the switching dynamics is the thickness and the structure of adsorbed water structure and its associated dielectric constant and ionic mobility

    On the persistence of polar domains in ultrathin ferroelectric capacitors

    Get PDF
    The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO3_3 films sandwiched between the most habitual perovskite electrodes, SrRuO3_3, on top of the most used perovskite substrate, SrTiO3_3. We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO3_3 capacitors. We show that even the high screening efficiency of SrRuO3_3 electrodes is still insufficient to stabilize polarization in SrRuO3_3/BaTiO3_3/SrRuO3_3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.Comment: 13 pages, 4 figure

    Non-linear nanoscale piezoresponse of single ZnO nanowires affected by piezotronic effect

    Get PDF
    Zinc oxide (ZnO) nanowires (NWs) as semiconductor piezoelectric nanostructures have emerged as material of interest for applications in energy harvesting, photonics, sensing, biomedical science, actuators or spintronics. The expression for the piezoelectric properties in semiconductor materials is concealed by the screening effect of the available carriers and the piezotronic effect, leading to complex nanoscale piezoresponse signals. Here, we have developed a metal-semiconductor-metal model to simulate the piezoresponse of single ZnO NWs, demonstrating that the apparent non-linearity in the piezoelectric coefficient arises from the asymmetry created by the forward and reversed biased Schottky barriers at the semiconductor-metal junctions. By directly measuring the experimental I-V characteristics of ZnO NWs with conductive atomic force microscope together with the piezoelectric vertical coefficient by piezoresponse force microscopy, and comparing them with the numerical calculations for our model, effective piezoelectric coefficients in the range d 33eff ∼ 8.6 pm V¯¹-12.3 pm V¯¹ have been extracted for ZnO NWs. We have further demonstrated via simulations the dependence between the effective piezoelectric coefficient d 33eff and the geometry and physical dimensions of the NW (radius to length ratio), revealing that the higher d 33eff is obtained for thin and long NWs due to the tensor nature proportionality between electric fields and deformation in NW geometries. Moreover, the non-linearity of the piezoresponse also leads to multiharmonic electromechanical response observed at the second and higher harmonics that indeed is not restricted to piezoelectric semiconductor materials but can be generalized to any type of asymmetric voltage drops on a piezoelectric structure as well as leaky wide band-gap semiconductor ferroelectrics
    • …
    corecore