2,990 research outputs found

    A search for 4750- and 4765-MHz OH masers in Southern Star Forming Regions

    Get PDF
    We have used the Australia Telescope Compact Array (ATCA) to make a sensitive (5-σ\sigma ≃\simeq 100 mJy) search for maser emission from the 4765-MHz 2Π1/2^2\Pi_{1/2} F=1→\to0 transition of OH. Fifty five star formation regions were searched and maser emission with a peak flux density in excess of 100 mJy was detected toward fourteen sites, with ten of these being new discoveries. In addition we observed the 4750-MHz 2Π1/2^2\Pi_{1/2} F=1→\to1 transition towards a sample of star formation regions known to contain 1720-MHz OH masers, detecting marginal maser emission from G348.550-0.979. If confirmed this would be only the second maser discovered from this transition. The occurrence of 4765-MHz OH maser emission accompanying 1720-MHz OH masers in a small number of well studied star formation regions has lead to a general perception in the literature that the two transitions favour similar physical conditions. Our search has found that the presence of the excited-state 6035-MHz OH transition is a much better predictor of 4765-MHz OH maser emission from the same region than is 1720-MHz OH maser emission. Combining our results with those of previous high resolution observations of other OH transitions we have examined the published theoretical models of OH masers and find that none of them predict any conditions in which the 1665-, 6035- and 4765-MHz transitions are simultaneously inverted. Erratum abstract: Dodson & Ellingsen (2002) included several observations with significant pointing errors, invalidating the upper limits found in these directions. These have now been reobserved or recalculated. A new table of upper limits has been generated, and two more masers that would have been seen have been found.Comment: Included an Erratum with Max as another author. This erratum was rejected by MNRAS (Feb 04) as it contained too much data. Resubmitted as a paper (Jun 04). Rejected (Sep 04) it had too little data. Resubmitted as reduced erratum (Apr 05). Still waitin

    VLBI study of maser kinematics in high-mass SFRs. II. G23.01-0.41

    Full text link
    The present paper focuses on the high-mass star-forming region G23.01-0.41. Methods: Using the VLBA and the EVN arrays, we conducted phase-referenced observations of the three most powerful maser species in G23.01-0.41: H2O at 22.2 GHz (4 epochs), CH3OH at 6.7 GHz (3 epochs), and OH at 1.665 GHz (1 epoch). In addition, we performed high-resolution (> 0".1), high-sensitivity (< 0.1 mJy) VLA observations of the radio continuum emission from the HMC at 1.3 and 3.6 cm. Results: We have detected H2O, CH3OH, and OH maser emission clustered within 2000 AU from the center of a flattened HMC, oriented SE-NW, from which emerges a massive 12CO outflow, elongated NE-SW, extended up to the pc-scale. Although the three maser species show a clearly different spatial and velocity distribution and sample distinct environments around the massive YSO, the spatial symmetry and velocity field of each maser specie can be explained in terms of expansion from a common center, which possibly denotes the position of the YSO driving the maser motion. Water masers trace both a fast shock (up to 50 km/s) closer to the YSO, powered by a wide-angle wind, and a slower (20 km/s) bipolar jet, at the base of the large-scale outflow. Since the compact free-free emission is found offset from the putative location of the YSO along a direction consistent with that of the maser jet axis, we interpret the radio continuum in terms of a thermal jet. The velocity field of methanol masers can be explained in terms of a composition of slow (4 km/s in amplitude) motions of radial expansion and rotation about an axis approximately parallel to the maser jet. Finally, the distribution of line of sight velocities of the hydroxyl masers suggests that they can trace gas less dense (n(H2) < 10^6 cm^-3) and more distant from the YSO than that traced by the water and methanol masers, which is expanding toward the observer. (Abridged)Comment: 23 pages, 8 figures, 4 tables, accepted by Astronomy and Astrophysic

    An analysis of the X-ray emission from the supernova remnant 3C397

    Get PDF
    The ASCA SIS and the ROSAT PSPC spectral data of the SNR 3C397 are analysed with a two-component non-equilibrium ionization model. Besides, the ASCA SIS0 and SIS1 spectra are also fitted simultaneously in an equilibrium case. The resulting values of the hydrogen column density yield a distance of \sim8\kpc to 3C397. It is found that the hard X-ray emission, containing S and Fe Kα\alpha lines, arises primarily from the hot component, while most of the soft emission, composed mainly of Mg, Si, Fe L lines, and continuum, is produced by the cool component. The emission measures suggest that the remnant evolves in a cloudy medium and imply that the supernova progenitor might not be a massive early-type star. The cool component is approaching ionization equilibrium. The ages estimated from the ionization parameters and dynamics are all much greater than the previous determination. We restore the X-ray maps using the ASCA SIS data and compare them with the ROSAT HRI and the NRAO VLA Sky Survey (NVSS) 20 cm maps. The morphology with two bright concentrations suggests a bipolar remnant encountering a denser medium in the west.Comment: 20 pages, aasms4.sty, 3 figures To appear in ApJ (1999

    Detection of new sources of methanol emission at 107 and 108 GHz with the Mopra telescope

    Get PDF
    A southern hemisphere survey of methanol emission sources in two millimeter wave transitions has been carried out using the ATNF Mopra millimetre telescope. Sixteen emission sources have been detected in the 3(1)-4(0)A+ transition of methanol at 107 GHz, including six new sources exhibiting class II methanol maser emission features. Combining these results with the similar northern hemisphere survey, a total of eleven 107-GHz methanol masers have been detected. A survey of the methanol emission in the 0(0)-1(-1)E transition at 108 GHz resulted in the detection of 16 sources; one of them showing maser characteristics. This is the first methanol maser detected at 108 GHz, presumably of class II. The results of LVG statistical equilibrium calculations confirm the classification of these new sources as a class II methanol masers.Comment: 11 pages, 6 figures, accepted for publication in MNRAS, mn.sty include

    Power, Threat, Meaning Framework informed audit: the ubiquitous experience of trauma in adults with psychosis

    Get PDF
    In the context of the Power, Threat, Meaning Framework and trauma-informed care, this audit attempted to identify experiences of trauma and adversity for clients on the caseload of an NHS community psychosis team. Histories of trauma were found for every client. The number of trauma experiences ranged from 1–9, giving a mean of 2.7 per client. This confirms clients with psychosis as a highly traumatised group and supports the trauma model of psychosis

    Methanol masers : Reliable tracers of the early stages of high-mass star formation

    Get PDF
    The GLIMPSE and MSX surveys have been used to examine the mid-infrared properties of a statistically complete sample of 6.7 GHz methanol masers. The GLIMPSE point sources associated with methanol masers are clearly distinguished from the majority, typically having extremely red mid-infrared colors, similar to those expected of low-mass class 0 young stellar objects. The intensity of the GLIMPSE sources associated with methanol masers is typically 4 magnitudes brighter at 8.0 micron than at 3.6 micron. Targeted searches towards GLIMPSE point sources with [3.6]-[4.5] > 1.3 and an 8.0 micron magnitude less than 10 will detect more than 80% of class II methanol masers. Many of the methanol masers are associated with sources within infrared dark clouds (IRDC) which are believed to mark regions where high-mass star formation is in its very early stages. The presence of class II methanol masers in a significant fraction of IRDC suggests that high-mass star formation is common in these regions. Different maser species are thought to trace different evolutionary phases of the high-mass star formation process. Comparison of the properties of the GLIMPSE sources associated with class II methanol masers and other maser species shows interesting trends, consistent with class I methanol masers tracing a generally earlier evolutionary phase and OH masers tracing a later evolutionary phase.Comment: 45 pages, 19 figures, accepted for publication in Ap

    Some Observations on the Handling of Adams\u27 Platinum-Oxide Hydrogenation Catalyst

    Get PDF
    Two problems are present in the measurement of the exact quantities of catalyst used in hydrogenations with platinum oxide. The first arises from the fact that platinum oxide is highly adsorbent and rapidly gains weight due to adsorption of atmospheric components when it is exposed to air. A procedure is described for making an approximate correction for this weight gain. The second problem is the identity of the actual catalytic material. The observations indicate that this is platinum metal, and it is shown that the platinum content varies with the batch of catalyst

    Effects of correlated turbulent velocity fields on the formation of maser lines

    Full text link
    The microturbulent approximation of turbulent motions is widely used in radiative transfer calculations. Mainly motivated by its simple computational application it is probably in many cases an oversimplified treatment of the dynamical processes involved. This aspect is in particular important in the analysis of maser lines, since the strong amplification of radiation leads to a sensitive dependence of the radiation field on the overall velocity structure. To demonstrate the influence of large scale motions on the formation of maser lines we present a simple stochastic model which takes velocity correlations into account. For a quantitative analysis of correlation effects, we generate in a Monte Carlo simulation individual realizations of a turbulent velocity field along a line of sight. Depending on the size of the velocity correlation length we find huge deviations between the resulting random profiles in respect of line shape, intensity and position of single spectral components. Finally, we simulate the emission of extended maser sources. A qualitative comparison with observed masers associated with star forming regions shows that our model can reproduce the observed general spectral characteristics. We also investigate shortly, how the spectra are effected when a systematic velocity field (simulating expansion) is superposed on the fluctuations. Our results convincingly demonstrate that hydrodynamical motions are of great importance for the understanding of cosmic masers.Comment: Accepted for publication in A&A. 8 pages, 8 figure
    • 

    corecore