520 research outputs found

    LivDet 2017 Fingerprint Liveness Detection Competition 2017

    Full text link
    Fingerprint Presentation Attack Detection (FPAD) deals with distinguishing images coming from artificial replicas of the fingerprint characteristic, made up of materials like silicone, gelatine or latex, and images coming from alive fingerprints. Images are captured by modern scanners, typically relying on solid-state or optical technologies. Since from 2009, the Fingerprint Liveness Detection Competition (LivDet) aims to assess the performance of the state-of-the-art algorithms according to a rigorous experimental protocol and, at the same time, a simple overview of the basic achievements. The competition is open to all academics research centers and all companies that work in this field. The positive, increasing trend of the participants number, which supports the success of this initiative, is confirmed even this year: 17 algorithms were submitted to the competition, with a larger involvement of companies and academies. This means that the topic is relevant for both sides, and points out that a lot of work must be done in terms of fundamental and applied research.Comment: presented at ICB 201

    LivDet in Action - Fingerprint Liveness Detection Competition 2019

    Full text link
    The International Fingerprint liveness Detection Competition (LivDet) is an open and well-acknowledged meeting point of academies and private companies that deal with the problem of distinguishing images coming from reproductions of fingerprints made of artificial materials and images relative to real fingerprints. In this edition of LivDet we invited the competitors to propose integrated algorithms with matching systems. The goal was to investigate at which extent this integration impact on the whole performance. Twelve algorithms were submitted to the competition, eight of which worked on integrated systems.Comment: Preprint version of a paper accepted at ICB 201

    Les facteurs à petite échelle affectent la taille des populations du Mulot (Apodemus sylvaticus) dans une île méditerranéenne (Sardaigne)

    Get PDF
    La variation de la taille des populations de Mulot (Apodemus sylvaticus) a été étudiée le long de30 transects indépendants sur l’île de Sardaigne (Italie), avec un accent mis sur la relation entre la taille de la population et les variables environnementales (type de boisement, épaisseur de la litière, diversité et taille des arbres, nombre de souches, couverture du sol, couverture buissonnante, bois mort). Les études ont été conduites selon un protocole de capture-marquage-recapture à l’aide de pièges placés le long des transects et surveillés au printemps et en automne. Sept variables environnementales ont été confrontées aux estimations de taille de population sur chaque transect, estimations obtenues à partir de cinq modèles démographiques distincts pour populations fermées. Des différences inter-saisonnières significatives ont été observées dans le nombre de spécimens capturés (pic au printemps) mais, en dépit de variations considérables selon les transects, la taille des populations de Mulot ne différait pas de manière significative entre les types d’habitats forestiers. La taille des populations de l’espèce est apparue positivement influencée par (i) la couverture au sol, (ii) le nombre de souches, et (iii) le % d’Erica arborea ; à l’inverse elle est apparue négativement influencée par (a) la hauteur des buissons de Rubus ulmifolius et (b) par le % de Rubus ulmifolius. Les raisons de ces patterns sont envisagées et discutéesThe variation of population size of the Wood Mouse (Apodemus sylvaticus) was studied across 30 independent transects in Sardinia island (Italy), with emphasis on the relationships between population size and environmental variables (type of wood, litter depth, tree diversity, tree size, number of stumps, ground cover, shrub cover, dead wood). Studies were conducted through a capture-mark-recapture protocol with live traps placed along line transects, and surveyed in both spring and autumn. Seven environmental variables were contrasted to population size estimates in each transect, with estimates of population size being obtained from five distinct demography models for close populations. There were significant inter-seasonal differences in the number of captured specimens (peak in springtime), but the population size of the Wood Mouse, despite varying considerably by transect, did not differ significantly among types of forest habitats. Population size of this species was positively influenced by (i) ground cover, (ii) number of stumps, and (iii) % Erica arborea; conversely, it was negatively influenced by (a) height of Rubus ulmifolius bushes and (b) by % Rubus ulmifolius. The possible reasons behind these patterns were explored and discusse

    Sustained release of antimicrobials from double-layer nanofiber mats for local treatment of periodontal disease, evaluated using a new micro flow-through apparatus

    Get PDF
    Periodontal disease is a widespread chronic condition associated with degradation of periodontal tissues that requires more effective approaches for its treatment. Thus, the aim was to develop a nanodelivery system for local application of antimicrobials, with evaluation in vitro using a newly developed micro flow-through apparatus that simulates local in-vivo conditions in the periodontal pocket: small resting volume, and low gingival crevicular fluid flow rate. We successfully developed a double-layer nanofiber mat composed of a chitosan/ poly(ethylene) oxide nanofiber layer with 30% ciprofloxacin, and a poly(ε-caprolactone) nanofiber layer with 5% metronidazole. The precisely designed composition enabled sustained in-vitro release of the antimicrobials according to their specific drug release mechanisms. The rate-limiting step of ciprofloxacin release was its own low solubility at pH 7.4, when there was excess of solid drug present in the delivery system. In contrast, sustained release of metronidazole was due to slow penetration of dissolution medium through the hydrophobic poly(ε-caprolactone) nanofiber layer. The double-layer nanofiber mat developed showed antibacterial activity against Escherichia coli and Aggregatibacter actinomycetemcomitans based on plate antibiogram assays. The antimicrobial concentrations released from the nanofiber mats determined using the developed apparatus were above the minimal inhibitory concentrations against the periodontal pathogens for up to 7 days, which is valuable information for prediction of the efficacy of the nanodelivery system. Although this apparatus was specifically designed for characterization of formulations associated with treatments for periodontal disease, its applicability is much wide, as for development of any delivery system for application at target sites that have similar local conditions

    graphene mediated surface enhanced raman scattering in silica mesoporous nanocomposite films

    Get PDF
    Highly performing mesoporous nanocomposite films with embedded exfoliated graphene and gold nanoparticles display a significant enhancement of G-SERS properties

    Bentonite- and Palygorskite-Based Gels for Topical Drug Delivery Applications

    Get PDF
    Bentonite or palygorskite-based hydrogels have recently been suggested as a strategy to increase bioavailability and control the retention and release of therapeutic candidates. In this work, clay-based hydrogels loaded with diclofenac acid nanocrystals have been successfully designed and developed. The aim was to improve diclofenac solubility, its dissolution rate and to enhance its local bioavailability after topical application. For this purpose, diclofenac acid nanocrystals were prepared by wet media milling technology and then loaded into inorganic hydrogels based on bentonite and/or palygorskite. Diclofenac acid nanocrystals were characterized by morphology, size, and zeta potential. Moreover, rheological behavior, morphology, solid state, release studies, and in vitro skin penetration/permeation of diclofenac acid nanocrystals-loaded hydrogels were performed. The hydrogels were characterized by a crystalline structure, and demonstrated that the inclusion of diclofenac in clay-based hydrogels resulted in an increased thermal stability. The presence of both palygorskite and bentonite reduced nanocrystal mobility, and consequently its release and penetration into the skin. On the other hand, bentonite- or palygorskite-based hydrogels revealed great potential as an alternative strategy to enhance topical bioavailability of DCF nanocrystals, enhancing their penetration to the deeper skin layers

    Fingerprint Presentation Attacks: Tackling the Ongoing Arms Race in Biometric Authentication

    Get PDF
    The widespread use of Automated Fingerprint Identification Systems (AFIS) in consumer electronics opens for the development of advanced presentation attacks, i.e. procedures designed to bypass an AFIS using a forged fingerprint. As a consequence, AFIS are often equipped with a fingerprint presentation attack detection (FPAD) module, to recognize live fingerprints from fake replicas, in order to both minimize the risk of unauthorized access and avoid pointless computations. The ongoing arms race between attackers and detector designers demands a comprehensive understanding of both the defender’s and attacker’s perspectives to develop robust and efficient FPAD systems. This paper proposes a dual-perspective approach to FPAD, which encompasses the presentation of a new technique for carrying out presentation attacks starting from perturbed samples with adversarial techniques and the presentation of a new detection technique based on an adversarial data augmentation strategy. In this case, attack and defence are based on the same assumptions demonstrating that this dual research approach can be exploited to enhance the overall security of fingerprint recognition systems against spoofing attacks

    Mesoscale organization of titania thin films enables oxygen sensing at room temperature

    Get PDF
    The application of titania materials to gas sensing devices based on thin films are of limited utility because they only operate at a high working temperature and exhibit in general a low sensitivity. To overcome these constraints, a new type of oxygen sensor based on mesoporous titania thin films working at room temperature under UV irradiation has been developed. The increased density of charge carriers induced by the photoconductive effect, has been used to enhance the sensitivity of the thin oxide layers. Mesostructured titania films have been prepared via self-assembly and thermal processing to remove the organic template obtaining anatase nanocrystals. The mesoporous films show a striking decrease of the current in the presence of oxygen that acts as an electron scavenger. Mesoporous samples exhibit a much higher response with respect to dense titania, due to the higher surface area and the larger number of surface defects.RAS is acknowledged for funding this project through CRP 30 L.R. 7/2007 ‘‘Bando Capitale Umano ad Alta Qualificazione annualita` 2015’’. This work was partially supported by the project ‘‘Mi ADATTI E L’ABBATTI’’- INSTM-Regione Lombardia project INSTMRL6

    Defect-assisted photoluminescence in hexagonal boron nitride nanosheets

    Get PDF
    The development of functional optoelectronic applications based on hexagonal boron nitride nanosheets (h-BNNs) relies on controlling the structural defects. The fluorescent emission, in particular, has been observed to depend on vacancies and substitutional defects. In the present work, few-layerh-BNNs have been obtained by sonication-assisted liquid-phase exfoliation of their bulk counterpart. The as-prepared samples exhibit a weak fluorescent emission in the visible range, centred around 400 nm. Tailored defects have been introduced by oxidation in air at different temperatures. A significant increase in the fluorescent emission of the oxidatedh-BNNs has been observed with maximum emissive intensity for the samples treated at 300 degrees C. A further increase in temperatures (>300 degrees C) determines a quenching of the fluorescence. We investigated, by means of detailed microscopic and spectroscopic analysis, the relationship between the optical properties and defects ofh-BNNs. The investigation of the optical properties as a function of treatment temperature highlights the critical role of hydroxyl groups created by the oxidation process. Onlyh-BN exfoliated in water allows introducing OH groups with consequent enhancement of fluorescence emission. Quantum chemical calculations support the experimental findings
    • …
    corecore