15 research outputs found

    Unveiling the interaction of vanadium compounds with human serum albumin by using 1H STD NMR and computational docking studies

    Get PDF
    The binding of the VV oxidation products of two vanadium(IV) compounds, [VO(dmpp)2] and [VO(maltolato)2], which have shown promising anti-diabetic properties, to human serum albumin (HSA) in aqueous aerobic solution has been studied by 1H saturation transfer difference (STD) NMR spectroscopy and computational docking studies. Group epitope mapping and docking simulations indicate a preference of HSA binding to the 1:1 [VO2(dmpp)(OH)(H2O)]- and 1:2 [VO 2(maltol)2]- vanadium(V) species. By using known HSA binders, competition NMR experiments revealed that both complexes preferentially bind to drug site I. Docking simulations carried out with HADDOCK together with restraints derived from the STD results led to three-dimensional models that are in agreement with the NMR spectroscopic data, providing useful information on molecular interaction modes. These results indicate that the combination of STD NMR and data-driven docking is a good tool for elucidating the interactions in protein-vanadium compounds and thus for clarifying the mechanism of drug delivery as vanadium compounds have shown potential therapeutic properties. 1H STD NMR analysis complemented by HADDOCK studies have revealed that the [VO2(dmpp)(H2O)(OH)] - species, resulting from the oxidation of the potential insulin mimetic VO(dmpp)2, binds preferentially to HSA site I. These findings corroborate the involvement of this serum protein in the transport of vanadium species in the blood stream and their delivery to target cells

    Dual imaging gold nanoplatforms for targeted radiotheranostics

    Full text link
    Gold nanoparticles (AuNPs) are interesting for the design of new cancer theranostic tools, mainly due to their biocompatibility, easy molecular vectorization, and good biological half-life. Herein, we report a gold nanoparticle platform as a bimodal imaging probe, capable of coordinating Gd3+ for Magnetic Resonance Imaging (MRI) and 67Ga3+ for Single Photon Emission Computed Tomography (SPECT) imaging. Our AuNPs carry a bombesin analogue with anity towards the gastrin releasing peptide receptor (GRPr), overexpressed in a variety of human cancer cells, namely PC3 prostate cancer cells. The potential of these multimodal imaging nanoconstructs was thoroughly investigated by the assessment of their magnetic properties, in vitro cellular uptake, biodistribution, and radiosensitisation assays. The relaxometric properties predict a potential T1-and T2-MRI application. The promising in vitro cellular uptake of 67Ga/Gd-based bombesin containing particles was confirmed through biodistribution studies in tumor bearing mice, indicating their integrity and ability to target the GRPr. Radiosensitization studies revealed the therapeutic potential of the nanoparticles. Moreover, the DOTA chelating unit moiety versatility gives a high theranostic potential through the coordination of other therapeutically interesting radiometals. Altogether, our nanoparticles are interesting nanomaterial for theranostic application and as bimodal T1-and T2-MRI / SPECT imaging probes.This research was funded by FCT (Portuguese Foundation for Science and Technology), grant numbers EXCL/QEQ-MED/0233/2012, UID/Multi/04349/2013 and PTDC/MED-QUI/29649/2017. CFGCG and MMCAC thank FCT and FEDER through the COMPETE Program for funding the CQC (UID/QUI/00313/2013 and PEst-OE/QUI/UI0313/2014). P.L-L. thanks Ministry of Economy, Industry and Competitiviy for SAF2017-83043-R, and Comunity of Madrid, FEDER and FSE for S2017/BMD-368

    Mn(III) porphyrins as potential MRI contrast agents for diagnosis and MRI-guided therapy

    No full text
    Mn(III) porphyrins have great potential as Gd-free MRI contrast agents because both the cation and the ligand have interesting properties. The redox properties of the Mn(III)-ion can be exploited for the preparation of reactive oxygen species for therapy. Moreover, the porphyrin ligand allows these complexes to have a high affinity for tumor tissues. The inherent properties of the porphyrin ligands make these systems attractive for photothermal, photodynamic, and sonodynamic therapies. Therefore, these systems are attractive for the development of theranostics for MRI-guided therapy. For the magnetic field strengths at which most clinical MRI machines operate at present (0.5–1.5 T), the longitudinal relativity of low-molecular-weight complexes is even higher than that of the classical Gd-based contrast agents. This review gives an overview of the developments in the field of Mn(III) porphyrin contrast agents during the last 30 years.</p

    Response to Letter to the Editors: “Have we lost an essential link between coordination chemistry and medical applications?”

    No full text
    Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/Biocatalysi

    Metal-based redox-responsive MRI contrast agents

    No full text
    International audienceGiven their potential in a better characterization and diagnosis of major pathologies like cancer or chronic inflammation, redox-activated Magnetic Resonance Imaging (MRI) probes have recently attracted much interest from chemists. Such redox responsive probes are capable of reporting on specific biomarkers that are related to tissue redox potential disruption or hypoxia. Lately, this research area has experienced remarkable development, including redox-responsive metal complexes and nanoparticles. Here we critically review the progress with a specific focus on metal-based probes and some nanoparticle examples. We demonstrate, via representative cases, the different molecular mechanisms that can generate a redox-modulated MRI response. They can be based on the redox activity of either the ligand or the metal center, provided the different oxidation states of the metal ion are endowed with different magnetic properties. A particular emphasis is given to recent advances and to the imaging probes that have attained in vivo validation. In overall, we aim to provide the reader with a comprehensive view of how intracellular or extracellular redox buffer systems can be assessed by using MRI contrast agents based on lanthanide or transition metal ions using T1-weighted, T2-weighted, paraCEST 1H or 19F MRI

    Unveiling the interaction of vanadium compounds with human serum albumin by using 1H STD NMR and computational docking studies

    No full text
    The binding of the VV oxidation products of two vanadium(IV) compounds, [VO(dmpp)2] and [VO(maltolato)2], which have shown promising anti-diabetic properties, to human serum albumin (HSA) in aqueous aerobic solution has been studied by 1H saturation transfer difference (STD) NMR spectroscopy and computational docking studies. Group epitope mapping and docking simulations indicate a preference of HSA binding to the 1:1 [VO2(dmpp)(OH)(H2O)]- and 1:2 [VO 2(maltol)2]- vanadium(V) species. By using known HSA binders, competition NMR experiments revealed that both complexes preferentially bind to drug site I. Docking simulations carried out with HADDOCK together with restraints derived from the STD results led to three-dimensional models that are in agreement with the NMR spectroscopic data, providing useful information on molecular interaction modes. These results indicate that the combination of STD NMR and data-driven docking is a good tool for elucidating the interactions in protein-vanadium compounds and thus for clarifying the mechanism of drug delivery as vanadium compounds have shown potential therapeutic properties. 1H STD NMR analysis complemented by HADDOCK studies have revealed that the [VO2(dmpp)(H2O)(OH)] - species, resulting from the oxidation of the potential insulin mimetic VO(dmpp)2, binds preferentially to HSA site I. These findings corroborate the involvement of this serum protein in the transport of vanadium species in the blood stream and their delivery to target cells

    Melamine/epichlorohydrin prepolymers: syntheses and characterization

    Get PDF
    The basic catalysis of melamine with epichlorohydrin gives prepolymers that can be used in the preparation of energetic materials. In this work, sodium hydroxide and triethylamine were used as catalysts and ethyleneglycol as initiator. Different reaction conditions were tested and the characterization of the products was carried out by IR and NMR spectroscopy and MS spectrometry, hydroxyl groups content, vapour pressure osmometry and elemental and thermal analysis. Epichlorohydrin reacts with the amine groups of melamine and forms lateral chains with hydroxyl and epoxide end groups, which can be used for curing purposes. The two catalysts lead to similar products, confirmed both by the structure and number of the lateral chains. The melamine/epichlorohydrin ratio was found important for the structure of the final compounds. Chlorine atoms leave the molecules during reaction due to basic catalysis. In the light of the use of the prepolymers in energetic materials, the presence of the 1,3,5-s-triazine ring and the lateral chains with end groups curable by e.g. isocyanates was accomplished with success. However, the loss of chlorine atoms limits to a certain extent their possible substitution by energetic groups.http://www.sciencedirect.com/science/article/B6TXW-4F9247B-5/1/7bee9df489c5d6ca2f506eeeb1d5708

    Lanthanopolyoxometalate-Silica Core/Shell Nanoparticles as Potential MRI Contrast Agents

    No full text
    The NMR relaxivities of the decatungstolanthanoate core-shell nanoparticles, prepared by encapsulating [Ln(W5O18)2]9− polyoxometalates (LnPOM) within amorphous silica shells (K9[Ln(W5O18)2]@SiO2), were studied along the Ln series. The relaxivity of GdPOM is slightly higher than for Gd-DTPA due to second-sphere relaxation effects, but the values for the other paramagnetic LnPOMs are much smaller due to the short T1e values of their Ln3+-ions. The NPs have core-shell spherical structures, with LnPOM-containing cores with 9.5–28 nm diameters, and 4.0–11.0 nm thick amorphous silica shells. In water suspensions, the NPs have negative zeta potentials (−32.5 to −40.0 mV) and time-dependent hydrodynamic diameters (31–195 nm) reflecting the formation of aggregates. The relaxivities of GdPOM@SiO2 NPs suspensions (r1=10.97 (mM Gd)−1 s−1, r2=12.02 (mM Gd)−1 s−1, 0.47 T, 25 °C) are considerably larger than for the GdPOM solutions, indicating that their silica shell is significantly porous to water. This increase is limited by the agglomeration of the complexes in the NPs core, limiting their access to water to those at the core surface. Replacing half of the Gd3+ ions by Eu3+ decreases the NPs r1 and r2 relaxivities at 0.47 T to 20 % and 35 % of their initial values, which are still considerable, but does not affect the efficient luminescence properties of the Eu3+ centers. This indicates that the mixed NPs have potential as dual modality MRI/optical imaging contrast agents.</p

    The quest for biocompatible phthalocyanines for molecular imaging: Photophysics, relaxometry and cytotoxicity studies

    No full text
    International audienceWater soluble phthalocyanines bearing either four PEG500 or four choline substituents in the macrocyclic structure, as well as their Zn(II) and Mn(III) complexes were synthesized. The metal-free and Zn(II) complexes present relatively high fluorescence quantum yields (up to 0.30), while the Mn(III) complexes show no fluorescence as a consequence of rapid non-radiative deactivation of the Mn(III) phthalocyanine excited states through low-lying metal based or charge-transfer states. The effect of DMSO on the aggregation of the phthalocyanines was studied. It was not possible to obtain the Mn(II) complexes by reduction of the corresponding Mn(III) complexes due to the presence of electron donating substituents at the periphery of the phthalocyanines. The (1)H NMRD plots of the PEG500 and choline substituted Mn(III)-phthalocyanine complexes are typical of self-aggregated Mn(III) systems with r1 relaxivities of 4.0 and 5.7mM(-1)s(-1) at 20MHz and 25 degrees C. The Mn(III)-phthalocyanine-PEG4 complex shows no significant cytotoxicity to HeLa cell cultures after 2h of incubation up to 2mM concentration. After 24h of cell exposure to the compound, significant toxicity was observed for all the concentrations tested with IC50 of 1.105mM
    corecore