5 research outputs found
Behavioral manifestations in rodent models of autism spectrum disorder : protocol for a systematic review and network meta-analysis
Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with severe social communication, interaction, and sensory processing impairments. Efforts to understand its etiology and pathophysiology are crucial for improving treatment and prevention measures. Preclinical models of ASD are essential for investigating the biological mechanisms and should present translatability potential. We aim to evaluate the consistency of the most commonly used rodent models of ASD in displaying autistic-like behavior through a systematic review and meta-analysis. Methods: This review will focus on the most frequently used autism models, surveying studies of six genetic (Ube3a, Pten, Nlgn3, Shank3, Mecp2, and Fmr1), three chemically induced (valproic acid (VPA), lipopolysaccharide (LPS), and polyinosinic:polycytidylic acid (poly(I:C))), and one inbred model (BTBR T+ Itpr3tf/J mouse strain). Two independent reviewers will screen the records. Data extraction of behavioral outcomes and risk of bias evaluation will be performed. We will conduct a meta-analysis whenever at least five studies investigate the same model and behavioral outcome. We will also explore the heterogeneity and publication bias. Network meta-analyses are planned to compare different models. Discussion: By shortening the gap between animal behavior and human endophenotypes or specific clinical symptoms, we expect to help researchers on which rodent models are adequate for research of specific behavioral manifestations of autism, which potentially require a combination of them depending on the research interest
Behavioral manifestations in rodent models of autism spectrum disorder: a systematic review and network meta-analysis
This review aims to evaluate whether the most commonly used rodent models of autism spectrum disorder reproduce the behavioral phenotypes relevant to the core symptoms of the condition in humans
Neonatal fluoxetine exposure modulates serotonergic neurotransmission and disturb inhibitory action of serotonin on food intake
The neurotransmitter serotonin (5-HT) acts as an important regulator of the critical neurodevelopmental processes and thus alterations in 5-HT signaling early promotes permanent structural and functional changes in brain. The selective serotonin reuptake inhibitors (SSRIs), as fluoxetine and citalopram, blocking serotonin transporter (SERT) at the presynaptic neuron, which regulates extracellular 5-HT levels. Evidence suggests that the exposure to SSRIs in the neurodevelopmental period may alters 5-HT signaling sensitivity on food intake control. The aim of the present study was to evaluate the effects of neonatal exposure to fluoxetine on molecular and cellular components of the serotonergic system and food intake control in young animals. Methods: The animals were divided according to experimental manipulation, Fluoxetine Group (FG): male pups received application of fluoxetine (10 mg/kg, 10 mu L/g) and Saline Group (SG): male pups received saline application (0.9% NaCl, 10 mu L/g), both throughout lactation (PND1-PND21). They evaluated body weight, food intake, SERT gene and protein expression, serotonin content in the hypothalamus. The neonatal exposure to fluoxetine promoted reduction in body weight, disturb the serotonin hypophagic response, and increase the serotonin and SERT hypothalamic in young animals. We conclude that the changes of components of the serotonergic system by neonatal exposure to fluoxetine may be responsible for disturb the inhibitory action of serotonin on food intake3576570CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNP
Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma
Abstract Background Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. Methods C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 105 human AD-MSCs, or EVs (released by 105 AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. Results In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3+CD4+ T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3+CD4+ T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3+CD4+ T cells in the mediastinal lymph nodes. Conclusions In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different mechanisms of action of AD-MSCs versus their EVs
Adoptive Transfer of Bone Marrow-Derived Monocytes Ameliorates Schistosoma mansoni -Induced Liver Fibrosis in Mice
Submitted by Sandra Infurna ([email protected]) on 2019-08-27T16:02:21Z
No. of bitstreams: 1
LigiaPaiva_PatriciaBozza_etal_IOC_2019.pdf: 2005612 bytes, checksum: 2e2972526ba6a74ba6c014cbe3ab3614 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2019-08-27T16:12:39Z (GMT) No. of bitstreams: 1
LigiaPaiva_PatriciaBozza_etal_IOC_2019.pdf: 2005612 bytes, checksum: 2e2972526ba6a74ba6c014cbe3ab3614 (MD5)Made available in DSpace on 2019-08-27T16:12:39Z (GMT). No. of bitstreams: 1
LigiaPaiva_PatriciaBozza_etal_IOC_2019.pdf: 2005612 bytes, checksum: 2e2972526ba6a74ba6c014cbe3ab3614 (MD5)
Previous issue date: 2019Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, Brasil.Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, Brasil.Universidade Federal de Pernambuco. Centro Acadêmico de Vitória. Vitória de Santo Antão, PE, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, Brasil.Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, Brasil.Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, Brasil.Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, Brasil.Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, Brasil.Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, Brasil.Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, Brasil.Liver diseases are a major health problem worldwide leading to high mortality rates and causing a considerable economic burden in many countries. Cellular therapies as potential treatments for liver diseases have proven beneficial in most of the conditions. In recent years, studies involving therapy with bone marrow cells have been implemented to promote liver regeneration and to reduce hepatic fibrosis, however identifying the cell population present in the bone marrow that is responsible for hepatic improvement after therapy is still necessary. The aim of the present study was the evaluation of the therapeutic efficacy of monocytes obtained from bone marrow in fibrosis resulting from S. mansoni infection in C57BL/6 mice. Monocytes were isolated by immunomagnetic separation and administered to the infected animals. The effects of treatment were evaluated through morphometric, biochemical, immunological and molecular analyzes. Monocyte therapy promoted reduction of liver fibrosis induced by S. mansoni infection, associated with a decrease in production of inflammatory and pro-fibrogenic mediators. In addition, monocyte infusion caused downregulation of factors associated with the M1 activation profile, as well as upregulation of M2reg markers. The findings altogether reinforce the hypothesis that the predominance of M2reg macrophages, producers of immunosuppressive cytokines, may favor the improvement of hepatic fibrosis in a preclinical model, through fibrous tissue remodeling, modulation of the inflammatory response and fibrogenesis