321 research outputs found

    Mott Transition, Compressibility Divergence and P-T Phase Diagram of Layered Organic Superconductors: An Ultrasonic Investigation

    Full text link
    The phase diagram of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2Cl has been investigated by ultrasonic velocity measurements under helium gas pressure. Different phase transitions were identified trough several elastic anomalies characterized from isobaric and isothermal sweeps. Our data reveal two crossover lines that end on the critical point terminating the first-order Mott transition line. When the critical point is approached along these lines, we observe a dramatic softening of the velocity which is consistent with a diverging compressibility of the electronic degrees of freedom.Comment: 4 pages, 5 figure

    Differential chloride homeostasis in the spinal dorsal horn locally shapes synaptic metaplasticity and modality-specific sensitization

    Get PDF
    Inhibition in spinal nociceptive pathways is weaker and more labile in lamina I —where thermal input is primarily processed— than in lamina II that encodes predominantly high threshold mechanical input. This explains why noxious thermal input makes spinal circuits prone to catastrophic sensitization

    Organometallic iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis

    Get PDF
    Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (IrIII) complexes [Ir(Cpx)(XY)Cl]+/0 (Cpx = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cpx ring. In comparison, highly potent complex 4 (Cpx = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these IrIII complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic IrIII complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands

    Integration of Solexa sequences on an ultradense genetic map in Brassica rapa L.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequence related amplified polymorphism (SRAP) is commonly used to construct high density genetic maps, map genes and QTL of important agronomic traits in crops and perform genetic diversity analysis without knowing sequence information. To combine next generation sequencing technology with SRAP, Illumina's Solexa sequencing was used to sequence tagged SRAP PCR products.</p> <p>Results</p> <p>Three sets of SRAP primers and three sets of tagging primers were used in 77,568 SRAP PCR reactions and the same number of tagging PCR reactions respectively to produce a pooled sample for Illumina's Solexa sequencing. After sequencing, 1.28 GB of sequence with over 13 million paired-end sequences was obtained and used to match Solexa sequences with their corresponding SRAP markers and to integrate Solexa sequences on an ultradense genetic map. The ultradense genetic bin map with 465 bins was constructed using a recombinant inbred (RI) line mapping population in <it>B. rapa</it>. For this ultradense genetic bin map, 9,177 SRAP markers, 1,737 integrated unique Solexa paired-end sequences and 46 SSR markers representing 10,960 independent genetic loci were assembled and 141 unique Solexa paired-end sequences were matched with their corresponding SRAP markers. The genetic map in <it>B. rapa </it>was aligned with the previous ultradense genetic map in <it>B. napus </it>through common SRAP markers in these two species. Additionally, SSR markers were used to perform alignment of the current genetic map with other five genetic maps in <it>B. rapa </it>and <it>B. napus</it>.</p> <p>Conclusion</p> <p>We used SRAP to construct an ultradense genetic map with 10,960 independent genetic loci in <it>B. rapa </it>that is the most saturated genetic map ever constructed in this species. Using next generation sequencing, we integrated 1,878 Solexa sequences on the genetic map. These integrated sequences will be used to assemble the scaffolds in the <it>B. rapa </it>genome. Additionally, this genetic map may be used for gene cloning and marker development in <it>B. rapa </it>and <it>B. napus</it>.</p

    Phenotype Fingerprinting Suggests the Involvement of Single-Genotype Consortia in Degradation of Aromatic Compounds by Rhodopseudomonas palustris

    Get PDF
    Anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of environmental pollutants. In natural environments, the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. This strategy allows consortium organisms to reduce efforts required for maintenance of the redox homeostasis at each syntrophic level. Cellular mechanisms that maintain the redox homeostasis during the degradation of aromatic compounds by one organism are not fully understood. Here we present a hypothesis that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris forms its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. We have revealed the consortia from large-scale measurements of mRNA and protein expressions under p-coumarate, benzoate and succinate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach, marker genes for known R. palustris phenotypes are employed to determine the relative expression levels of genes and proteins in aromatics versus non-aromatics degrading condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading conditions may lead to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO2 and H2. Benzoate degrading conditions may also produce at least three subpopulations utilizing benzoate, CO2 and H2, and N2 and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The N2-fixing subpopulation in the benzoate degrading consortium has preferential activation of the vanadium nitrogenase over the molybdenum nitrogenase. This subpopulation in the consortium was confirmed in an independent experiment by consumption of dissolved nitrogen gas under the benzoate degrading conditions

    Bortezomib in combination with celecoxib in patients with advanced solid tumors: a phase I trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>COX-2 inhibitors, such as celecoxib, and ubiquitin-proteasome pathway inhibitors, such as bortezomib, can down-regulate NF-κB, a transcription factor implicated in tumor growth. The objective of this study was to determine the maximum tolerated dose and dose-limiting toxicities of bortezomib in combination with celecoxib in patients with advanced solid tumors.</p> <p>Methods</p> <p>Patients received escalating doses of bortezomib either on a weekly schedule (days 1, 8, 15, 22, and 29 repeated every 42 days) or on a twice-weekly administration schedule (days 1, 4, 8, and 11 repeated every 21 days), in combination with escalating doses of celecoxib twice daily throughout the study period from 200 mg to 400 mg twice daily.</p> <p>Results</p> <p>No dose-limiting toxicity was observed during the study period. Two patients had stable disease lasting for four and five months each, and sixteen patients developed progressive disease.</p> <p>Conclusion</p> <p>The combination of bortezomib and celecoxib was well tolerated, without dose limiting toxicities observed throughout the dosing ranges tested, and will be studied further at the highest dose levels investigated.</p> <p>Trial registration number</p> <p>NCT00290680.</p
    corecore