40 research outputs found

    LA ILUMINACIÓN ARTIFICIAL EN LOS ESPACIOS DOCENTES

    Full text link
    [EN] This thesis deals with the study of artificial lighting in learning spaces and the emotions it causes in students. It is made as a guide for establishing a new methodology for both the accomplishment of studies of lighting and for the incorporation of the artificial lighting in the decision-making of architects. The working methodology is based on the Semantic Differential, within the context of Kansei Engineering, as a measure of the emotions aroused by lighting from the point of view of the user/student. Thanks to the use of this methodology there is avoided the disadvantage that the parameters are determined exclusively by experts and the study is orientated to the user. Thus, the obtained results can be applied in the definition of the design features that satisfy the perceptions, desires and needs of the students contributing to the improvement of learning. The information obtained in three field studies is analysed. In the first one, the students' perception of the classroom is studied, including parameters of Indoor Environmental Quality, architecture and interior design in order to determine the relationship between lighting and the rest of the factors in the classroom environment. In the second one, the luminous environment of the classroom is analysed following the same scheme and methodology used in the previous experience. Therefore, this research brings light to other studies in these areas and provides more complete information on the attributes that determine the preferences of students and their influence on the classroom and lighting's overall assessment. Finally, once it is designed the method, it is applied to a specific case: the analysis of the differences of perception of the classroom's lighting when it is changed the fluorescent lamps to LED (Light Emitting Diode) lamps since this change has important implications in the classroom's energy efficiency. Thus, it is showed the potential of the used methodology and its possible applications to the research of lighting. The study includes the development of a conceptual framework which incorporates the analysis of lighting studies carried out up to the date with the objective to guide properly further research and to show the potentials and limitations for future lines of work. Thus, this thesis opens the path for future research in architectural lighting that contributes to the formation of professionals sensitized with light and the emotions that it arouses and who have enough technical and creative ability to materialize this knowledge in their own work.[ES] La presente tesis doctoral aborda el estudio de la iluminación artificial en los espacios docentes y las emociones que ésta provoca en los alumnos. Se elabora a modo de guía para establecer una nueva metodología tanto para la realización de estudios de iluminación como para la incorporación de la iluminación artificial en la toma de decisiones de los arquitectos. La metodología de trabajo utilizada está basada en la Semántica Diferencial, dentro del contexto de la Ingeniería Kansei, como instrumento de medida de las emociones que despierta la iluminación desde el punto de vista del usuario/alumno. Gracias al uso de esta metodología se evita el inconveniente de que los parámetros se determinen exclusivamente por expertos y se orienta el estudio al usuario. Así, los resultados obtenidos se pueden aplicar en la definición de las características de diseño que satisfagan las percepciones, deseos y necesidades de los estudiantes contribuyendo a la mejora del aprendizaje. Se analiza la información obtenida en tres estudios de campo. En el primero se estudia la percepción que los alumnos tienen del aula en su conjunto, incluyendo parámetros tanto de calidad ambiental interior como de arquitectura y diseño interior, con el objeto de determinar la relación de la iluminación con el resto de factores del aula. En el segundo se analiza el ambiente luminoso del aula siguiendo el mismo esquema y metodología utilizado en la experiencia anterior. De este modo, esta investigación aporta luz a otros estudios realizados en estos ámbitos y ofrece una información más completa de los atributos que determinan las preferencias de los estudiantes y su influencia sobre la valoración global del aula y de su iluminación. Por último, una vez diseñado el método, se aplica a un caso concreto: el análisis de las diferencias de percepción del ambiente luminoso del aula cuando se produce el cambio de lámparas fluorescentes a lámparas LED (Light Emitting Diode) ya que esta modificación tiene importantes implicaciones en la eficiencia energética de las aulas. De esta forma, se ponen de manifiesto las posibilidades de la metodología utilizada y sus posibles aplicaciones al campo de la investigación en iluminación. El trabajo incluye el desarrollo de un marco conceptual que incorpora el análisis de los estudios de iluminación realizados hasta la fecha con el objetivo de dirigir apropiadamente la investigación posterior y sobre los que se muestran las potencialidades y limitaciones sobre las que dirigir futuras líneas de trabajo. De esta manera, esta tesis abre el camino a futuras investigaciones en el campo de la iluminación en la arquitectura que contribuyan a la formación de profesionales sensibilizados con la luz y las emociones que ésta despierta y que posean la capacidad técnica y creativa suficiente para materializar estos conocimientos en sus obras.[CA] La present tesi doctoral aborda l'estudi de la il·luminació artificial en els espais docents i les emocions que aquesta provoca en els alumnes. S'elabora a manera de guia per a establir una nova metodologia tant per a la realització d'estudis d'il·luminació com per a la incorporació de la il·luminació artificial en la presa de decisions dels arquitectes. La metodologia de treball utilitzada està basada en la Semàntica Diferencial, dins del context de l'Enginyeria Kansei, com instrument de mesura de les emocions que desperta la il·luminació des del punt de vista de l'usuari/alumne. Gràcies a l'ús d'aquesta metodologia s'evita l'inconvenient que els paràmetres es determinen exclusivament per experts i s'orienta l'estudi a l'usuari. Així, els resultats obtinguts es poden aplicar en la definició de les característiques de disseny que satisfacin les percepcions, desitjos i necessitats dels estudiants contribuint a la millora de l'aprenentatge. S'analitza la informació obtinguda en tres estudis de camp. En el primer s'estudia la percepció que els alumnes tenen de l'aula en el seu conjunt, incloent paràmetres tant de qualitat ambiental interior com d'arquitectura i disseny interior, amb l'objecte de determinar la relació de la il·luminació amb la resta de factors de l'aula. En el segon s'analitza l'ambient lluminós de l'aula seguint el mateix esquema i metodologia utilitzat en l'experiència anterior. D'aquesta manera, aquesta investigació aporta llum a altres estudis realitzats en aquests àmbits i ofereix una informació més completa dels atributs que determinen les preferències dels estudiants i la seua influència sobre la valoració global de l'aula i de la seua il·luminació. Finalment, una vegada dissenyat el mètode, s'aplica a un cas concret: l'anàlisi de les diferències de percepció de l'ambient lluminós de l'aula quan es produeix el canvi de llums fluorescents a llums LED (Light Emitting Diode) ja que aquesta modificació té importants implicacions en l'eficiència energètica de les aules. D'aquesta forma, es posen de manifest les possibilitats de la metodologia utilitzada i les seues possibles aplicacions al camp de la investigació en il·luminació. El treball inclou el desenvolupament d'un marc conceptual que s'acompanya de l'anàlisi dels estudis d'il·luminació realitzats fins a la data amb l'objectiu de dirigir apropiadament la investigació posterior i sobre els quals es mostren les potencialitats i limitacions sobre les quals dirigir futures línies de treball. D'aquesta manera, aquesta tesi obri el camí a futures investigacions en el camp de la il·luminació en l'arquitectura que contribuïsquen a la formació de professionals sensibilitzats amb la llum i les emocions que aquesta desperta i que posseïsquen la capacitat tècnica i creativa suficient per a materialitzar aquests coneixements en les seues obres.Castilla Cabanes, N. (2015). LA ILUMINACIÓN ARTIFICIAL EN LOS ESPACIOS DOCENTES [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/54109TESI

    Criterios de elección de luminarias

    Full text link
    En este artículo se exponen los criterios adecuados para establecer cuál es el tipo de luminaria más adecuado para la iluminación de un determinado espacio. Antes de utilizarlo se debe conocer qué clase de local se tiene que iluminar y cuáles son sus necesidades ya que estos datos influirán notablemente en la elección.Castilla Cabanes, N.; Martínez Antón, A. (2013). Criterios de elección de luminarias. http://hdl.handle.net/10251/3037

    Virtualized Computational Environments on the cloud to foster group skills through PBL: A case study in architecture

    Full text link
    The ODISEA platform provides Virtualized Computational Environments (VCEs) on cloud providers as the computational infrastructure to support educational activities. A VCE consists of a collection of one or more Virtual Machines (VMs) to which the students connect from their own computers. In this paper a case study is presented in the architecture domain where a PBL activity is carried out in working groups. The study involves 293 students organized in 28 pilot groups that use customized VCEs created and deployed through the ODISEA platform on a Cloud, and 30 traditional groups that use a LMS platform. The VCE provides the software, hardware and specific configuration to ease the interrelation and cooperative work between the working groups, enhancing the process tracking and feedback gathering as well as providing a better organization of the teaching material. The results demonstrate that the VCE allows to improve the cooperative work, improving the final marks in the PBL developed by the pilot working groups. Also, an economical study is presented, highlighting the economic benefits of the Cloud with respect to raditional physical laboratories of PCs.The authors wish to thank the financial support received from Vicerrectorado de Estudios, Calidad y Acreditacion of the Universitat Politecnica de Valencia (UPV) to develop the PIME project "Entomos Virtuales Computacionales para la Evaluation de Competencias Transversales en la Nube", with reference A04 and to the Ministerio de Economia, Industria y Cornpetitividad for the project BigCLOE (TIN2016-79951-R). GM would like to thank AWS for the AWS Educate program that provides the credits required to support the educational activities.Segrelles Quilis, JD.; Martínez Antón, A.; Castilla-Cabanes, N.; Moltó, G. (2017). Virtualized Computational Environments on the cloud to foster group skills through PBL: A case study in architecture. Computers and Education. 108:131-144. https://doi.org/10.1016/j.compedu.2017.02.001S13114410

    Affective evaluation of the luminous environment in university classrooms

    Full text link
    [EN] Universities worldwide are adopting new teaching methods and using new educational technologies. This progress requires changes in their physical environment, especially in the case of lighting, which is regarded as fundamental because of its recognised effect on the learning process. Different light levels are needed for new classroom tasks. The aim of the present paper is to analyse the affective impressions of university students with regard to the luminous environment in their classroom, in relation to the different tasks they carry out there. This analysis is conducted in the frame of Kansei Engineering. A sample of 854 students assessed in situ the luminous environment of 29 classrooms. In the first stage, subjective evaluation scales adapted to the students were defined and then related to the classroom tasks. The results show that students' affective responses in the assessment of the luminous environment in their classroom can be explained through the following dimensions: Clear-efficient, Uniform, Cheerful-colourful, Warm cosy, Surprising-amazing and Intense-brilliant. The relation of these dimensions to the tasks shows that the luminous environments in the classrooms need to be changed in accordance with the nature of the tasks. The environment should be different for the tasks groups of Writing-reading, Reflecting-discussing (for collaborative work) and Paying attention. It seems, therefore, that new classroom lighting guidelines, tailored to the new methodologies and technologies, are needed.This research was supported by Ministerio de Economia, Industria y Competitividad, Spain (project BIA2017-86157-R).Castilla-Cabanes, N.; Llinares Millán, MDC.; Bisegna, F.; Blanca Giménez, V. (2018). Affective evaluation of the luminous environment in university classrooms. Journal of Environmental Psychology. 58:52-62. https://doi.org/10.1016/j.jenvp.2018.07.010S52625

    CÁLCULO DEL CIRCUITO DEL MOTOR DEL ASCENSOR DE UN EDIFICIO DE VIVIENDAS

    Full text link
    En este artículo vamos a explicar cómo se dimensiona el circuito que alimenta el motor de un ascensor eléctrico. Emplearemos fórmulas y tablas que nos permitirán determinar los conductores y tubos adecuados. Al final se propone un ejercicio para poner en práctica lo aprendido.Martínez Antón, A.; Blanca Giménez, V.; Castilla Cabanes, N. (2012). CÁLCULO DEL CIRCUITO DEL MOTOR DEL ASCENSOR DE UN EDIFICIO DE VIVIENDAS. http://hdl.handle.net/10251/1635

    Características de luminarias: el código IP

    Full text link
    En este artículo se expone qué es el código IP, una de las características de las luminarias, en base a la normas UNE EN 60598-1 y la UNE 20324-93 (EN 60529:1991). Se establece la clasificación y codificación utilizada en dicha norma y un ejemplo de utilización.Castilla Cabanes, N.; Blanca Giménez, V.; Martínez Antón, A. (2012). Características de luminarias: el código IP. http://hdl.handle.net/10251/1635

    Improving the Pedestrian's Perceptions of Safety on Street Crossings. Psychological and Neurophysiological Effects of Traffic Lanes, Artificial Lighting, and Vegetation

    Full text link
    [EN] The effect that the physical characteristics of urban design have on the pedestrian's perceptions of safety is a fundamental aspect of city planning. This is particularly so with street crossings, where the pedestrian has to make a decision. This paper analyses how pedestrians are affected by number of traffic lanes, lighting colour temperature, and nearby vegetation as they cross roads. Perceptions of safety were quantified by means of the psychological and neurophysiological responses of 60 participants to 16 virtual reality scenarios (4 day and 12 night), based on existing urban design variables. The results showed differences between night-time and daytime scenarios, which suggests that there is a need to analyse both situations. As to the design guidelines, it was observed that safety is improved by reducing the number of traffic lanes and nearby vegetation, and by using a lighting colour temperature of 4500 K. However, the analysis of the variables showed that combined effects produce different results to those obtained from the analysis of individual elements. This result is essential information for urban managers in their assessments of whether particular interventions will improve crossing points.This work was supported by the Direccion General de Trafico-Ministerio del Interior de Espana (Project SPIP2017-02220).Llinares Millán, MDC.; Higuera-Trujillo, JL.; Montañana, A.; Castilla-Cabanes, N. (2020). Improving the Pedestrian's Perceptions of Safety on Street Crossings. Psychological and Neurophysiological Effects of Traffic Lanes, Artificial Lighting, and Vegetation. International Journal of Environmental research and Public Health (Online). 17(22):1-20. https://doi.org/10.3390/ijerph17228576S1201722Cho, G., Rodríguez, D. A., & Khattak, A. J. (2009). The role of the built environment in explaining relationships between perceived and actual pedestrian and bicyclist safety. Accident Analysis & Prevention, 41(4), 692-702. doi:10.1016/j.aap.2009.03.008Talavera, R., Soria, J. A., & Valenzuela, L. M. (2014). La calidad peatonal como método para evaluar entornos de movilidad urbana. Documents d’Anàlisi Geogràfica, 60(1), 161. doi:10.5565/rev/dag.55Bernhoft, I. M., & Carstensen, G. (2008). Preferences and behaviour of pedestrians and cyclists by age and gender. Transportation Research Part F: Traffic Psychology and Behaviour, 11(2), 83-95. doi:10.1016/j.trf.2007.08.004Liu, J. Y. (2014). Fear of falling in robust community-dwelling older people: results of a cross-sectional study. Journal of Clinical Nursing, 24(3-4), 393-405. doi:10.1111/jocn.12613Turner, S., Fitzpatrick, K., Brewer, M., & Park, E. S. (2006). Motorist Yielding to Pedestrians at Unsignalized Intersections. Transportation Research Record: Journal of the Transportation Research Board, 1982(1), 1-12. doi:10.1177/0361198106198200102Landis, B. W., Vattikuti, V. R., Ottenberg, R. M., McLeod, D. S., & Guttenplan, M. (2001). Modeling the Roadside Walking Environment: Pedestrian Level of Service. Transportation Research Record: Journal of the Transportation Research Board, 1773(1), 82-88. doi:10.3141/1773-10Feliciani, C., Gorrini, A., Crociani, L., Vizzari, G., Nishinari, K., & Bandini, S. (2020). Calibration and validation of a simulation model for predicting pedestrian fatalities at unsignalized crosswalks by means of statistical traffic data. Journal of Traffic and Transportation Engineering (English Edition), 7(1), 1-18. doi:10.1016/j.jtte.2019.01.004Karndacharuk, A. (Aut), Wilson, D. J., & Dunn, R. C. M. (2014). Safety Performance Study of Shared Pedestrian and Vehicle Space in New Zealand. Transportation Research Record: Journal of the Transportation Research Board, 2464(1), 1-10. doi:10.3141/2464-01Knight, C. (2010). Field surveys of the effect of lamp spectrum on the perception of safety and comfort at night. Lighting Research & Technology, 42(3), 313-329. doi:10.1177/1477153510376794Fotios, S., Unwin, J., & Farrall, S. (2014). Road lighting and pedestrian reassurance after dark: A review. Lighting Research & Technology, 47(4), 449-469. doi:10.1177/1477153514524587Hidayetoglu, M. L., Yildirim, K., & Akalin, A. (2012). The effects of color and light on indoor wayfinding and the evaluation of the perceived environment. Journal of Environmental Psychology, 32(1), 50-58. doi:10.1016/j.jenvp.2011.09.001Tantanatewin, W., & Inkarojrit, V. (2016). Effects of color and lighting on retail impression and identity. Journal of Environmental Psychology, 46, 197-205. doi:10.1016/j.jenvp.2016.04.015Haans, A., & de Kort, Y. A. W. (2012). Light distribution in dynamic street lighting: Two experimental studies on its effects on perceived safety, prospect, concealment, and escape. Journal of Environmental Psychology, 32(4), 342-352. doi:10.1016/j.jenvp.2012.05.006Suzer, O. K., Olgunturk, N., & Guvenc, D. (2018). The effects of correlated colour temperature on wayfinding: A study in a virtual airport environment. Displays, 51, 9-19. doi:10.1016/j.displa.2018.01.003Bratman, G. N., Hamilton, J. P., Hahn, K. S., Daily, G. C., & Gross, J. J. (2015). Nature experience reduces rumination and subgenual prefrontal cortex activation. Proceedings of the National Academy of Sciences, 112(28), 8567-8572. doi:10.1073/pnas.1510459112Chang, C.-Y., & Chen, P.-K. (2005). Human Response to Window Views and Indoor Plants in the Workplace. HortScience, 40(5), 1354-1359. doi:10.21273/hortsci.40.5.1354Van den Berg, A. E., Hartig, T., & Staats, H. (2007). Preference for Nature in Urbanized Societies: Stress, Restoration, and the Pursuit of Sustainability. Journal of Social Issues, 63(1), 79-96. doi:10.1111/j.1540-4560.2007.00497.xLohr, V. I., & Pearson-Mims, C. H. (2006). Responses to Scenes with Spreading, Rounded, and Conical Tree Forms. Environment and Behavior, 38(5), 667-688. doi:10.1177/0013916506287355Foltête, J.-C., & Piombini, A. (2007). Urban layout, landscape features and pedestrian usage. Landscape and Urban Planning, 81(3), 225-234. doi:10.1016/j.landurbplan.2006.12.001Smith, A. L. (2009). Contribution of Perceptions in Analysis of Walking Behavior. Transportation Research Record: Journal of the Transportation Research Board, 2140(1), 128-136. doi:10.3141/2140-14Granié, M.-A., Brenac, T., Montel, M.-C., Millot, M., & Coquelet, C. (2014). Influence of built environment on pedestrian’s crossing decision. Accident Analysis & Prevention, 67, 75-85. doi:10.1016/j.aap.2014.02.008Chu, X., Guttenplan, M., & Baltes, M. R. (2004). Why People Cross Where They Do: The Role of Street Environment. Transportation Research Record: Journal of the Transportation Research Board, 1878(1), 3-10. doi:10.3141/1878-01Dommes, A., & Cavallo, V. (2011). The role of perceptual, cognitive, and motor abilities in street-crossing decisions of young and older pedestrians. Ophthalmic and Physiological Optics, 31(3), 292-301. doi:10.1111/j.1475-1313.2011.00835.xDommes, A., Cavallo, V., Dubuisson, J.-B., Tournier, I., & Vienne, F. (2014). Crossing a two-way street: comparison of young and old pedestrians. Journal of Safety Research, 50, 27-34. doi:10.1016/j.jsr.2014.03.008Lipovac, K., Vujanic, M., Maric, B., & Nesic, M. (2013). Pedestrian Behavior at Signalized Pedestrian Crossings. Journal of Transportation Engineering, 139(2), 165-172. doi:10.1061/(asce)te.1943-5436.0000491Foot, H. C., Thomson, J. A., Tolmie, A. K., Whelan, K. M., Morrison, S., & Sarvary, P. (2006). Children’s understanding of drivers’ intentions. British Journal of Developmental Psychology, 24(4), 681-700. doi:10.1348/026151005x62417Papadimitriou, E., Yannis, G., & Golias, J. (2009). A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour, 12(3), 242-255. doi:10.1016/j.trf.2008.12.004Ewing, R., & Handy, S. (2009). Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. Journal of Urban Design, 14(1), 65-84. doi:10.1080/13574800802451155Ewing, R., Handy, S., Brownson, R. C., Clemente, O., & Winston, E. (2006). Identifying and Measuring Urban Design Qualities Related to Walkability. Journal of Physical Activity and Health, 3(s1), S223-S240. doi:10.1123/jpah.3.s1.s223Kort, Y. A. W. de, IJsselsteijn, W. A., Kooijman, J., & Schuurmans, Y. (2003). Virtual Laboratories: Comparability of Real and Virtual Environments for Environmental Psychology. Presence: Teleoperators and Virtual Environments, 12(4), 360-373. doi:10.1162/105474603322391604Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 73-93. doi:10.1111/j.1460-2466.1992.tb00812.xBakker, I., van der Voordt, T., Vink, P., & de Boon, J. (2014). Pleasure, Arousal, Dominance: Mehrabian and Russell revisited. Current Psychology, 33(3), 405-421. doi:10.1007/s12144-014-9219-4Gifford, R., Hine, D. W., Muller-Clemm, W., Reynolds, D. J., & Shaw, K. T. (2000). Decoding Modern Architecture. Environment and Behavior, 32(2), 163-187. doi:10.1177/00139160021972487Aspinall, P., Mavros, P., Coyne, R., & Roe, J. (2013). The urban brain: analysing outdoor physical activity with mobile EEG. British Journal of Sports Medicine, 49(4), 272-276. doi:10.1136/bjsports-2012-091877Gidlow, C. J., Jones, M. V., Hurst, G., Masterson, D., Clark-Carter, D., Tarvainen, M. P., … Nieuwenhuijsen, M. (2016). Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments. Journal of Environmental Psychology, 45, 22-29. doi:10.1016/j.jenvp.2015.11.003Higuera-Trujillo, J. L., Llinares Millán, C., Montañana i Aviñó, A., & Rojas, J.-C. (2019). Multisensory stress reduction: a neuro-architecture study of paediatric waiting rooms. Building Research & Information, 48(3), 269-285. doi:10.1080/09613218.2019.1612228Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. doi:10.3758/bf03193146Tilley, S., Neale, C., Patuano, A., & Cinderby, S. (2017). Older People’s Experiences of Mobility and Mood in an Urban Environment: A Mixed Methods Approach Using Electroencephalography (EEG) and Interviews. International Journal of Environmental Research and Public Health, 14(2), 151. doi:10.3390/ijerph14020151Slater, M., Usoh, M., & Steed, A. (1994). Depth of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments, 3(2), 130-144. doi:10.1162/pres.1994.3.2.130Knyazev, G. G., Savostyanov, A. N., & Levin, E. A. (2004). Alpha oscillations as a correlate of trait anxiety. International Journal of Psychophysiology, 53(2), 147-160. doi:10.1016/j.ijpsycho.2004.03.001Choi, Y., Kim, M., & Chun, C. (2015). Measurement of occupants’ stress based on electroencephalograms (EEG) in twelve combined environments. Building and Environment, 88, 65-72. doi:10.1016/j.buildenv.2014.10.003Keil, A., Müller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human Gamma Band Activity and Perception of a Gestalt. The Journal of Neuroscience, 19(16), 7152-7161. doi:10.1523/jneurosci.19-16-07152.1999Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009Gudmundsson, S., Runarsson, T. P., Sigurdsson, S., Eiriksdottir, G., & Johnsen, K. (2007). Reliability of quantitative EEG features. Clinical Neurophysiology, 118(10), 2162-2171. doi:10.1016/j.clinph.2007.06.018Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4-5), 411-430. doi:10.1016/s0893-6080(00)00026-5Slater, M., & Steed, A. (2000). A Virtual Presence Counter. Presence: Teleoperators and Virtual Environments, 9(5), 413-434. doi:10.1162/105474600566925Fotios, S., & Yao, Q. (2018). The association between correlated colour temperature and scotopic/photopic ratio. Lighting Research & Technology, 51(5), 803-813. doi:10.1177/1477153518779637Loewen, L. J., Steel, G. D., & Suedfeld, P. (1993). Perceived safety from crime in the urban environment. Journal of Environmental Psychology, 13(4), 323-331. doi:10.1016/s0272-4944(05)80254-3Boyce, P. R., Eklund, N. H., Hamilton, B. J., & Bruno, L. D. (2000). Perceptions of safety at night in different lighting conditions. Lighting Research and Technology, 32(2), 79-91. doi:10.1177/096032710003200205Peña-García, A., Hurtado, A., & Aguilar-Luzón, M. C. (2015). Impact of public lighting on pedestrians’ perception of safety and well-being. Safety Science, 78, 142-148. doi:10.1016/j.ssci.2015.04.009Fitzpatrick, C. D., Harrington, C. P., Knodler, M. A., & Romoser, M. R. E. (2014). The influence of clear zone size and roadside vegetation on driver behavior. Journal of Safety Research, 49, 97.e1-104. doi:10.1016/j.jsr.2014.03.006Kuo, F. E. (2001). Coping with Poverty. Environment and Behavior, 33(1), 5-34. doi:10.1177/00139160121972846Mulckhuyse, M., & Theeuwes, J. (2010). Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychologica, 134(3), 299-309. doi:10.1016/j.actpsy.2010.03.002Fitzpatrick, C. D., Samuel, S., & Knodler, M. A. (2016). Evaluating the effect of vegetation and clear zone width on driver behavior using a driving simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 42, 80-89. doi:10.1016/j.trf.2016.07.002Mok, J.-H., Landphair, H. C., & Naderi, J. R. (2006). Landscape improvement impacts on roadside safety in Texas. Landscape and Urban Planning, 78(3), 263-274. doi:10.1016/j.landurbplan.2005.09.00

    Subjective assessment of university classroom environment

    Full text link
    [EN] Research into the design of learning environments is warranted as the classroom space impacts on students' wellbeing and learning performance. Studies on subjective evaluation of classrooms usually focus on the influence of more objective aspects like temperature, light, sound, etc., based on concepts or attributes defined by experts. Thus, the attributes used to find relations with design parameters might not be recognised by users, thereby conditioning the evaluation process itself. This paper aims to analyse students' affective response to a university classroom in their own words, and then, after obtaining the semantic space, to identify the design elements that generate a positive affective response. This analysis was carried out implementing the Semantic Differential method in the framework of Kansei Engineering. A sample of 918 university students was assessed in situ in 30 university classrooms. The results show that students' affective structure in relation to their classroom comprises six independent factors: functionality and layout, cosy and pleasant, concentration and comfort, modern design, daylight and outward facing, and artificial lighting. From these factors, efforts to improve the classroom environment should be directed mainly towards two aspects: improving classroom functionality-layout, which is significantly related to the work space allocated to students; and the sensation of cosy-pleasant which is generated by all the classroom design parameters, but in particular, those that refer to the relationship of the classroom with the outdoor environment.This research was supported by Ministerio de Economia y Competitividad, Spain (project TIN2013-45736-R)Castilla-Cabanes, N.; Llinares Millán, MDC.; Bravo, JM.; Blanca Giménez, V. (2017). Subjective assessment of university classroom environment. Building and Environment. 122:72-81. https://doi.org/10.1016/j.buildenv.2017.06.004S728112

    Kansei engineering in the lighting design of emotional spaces

    Full text link
    [EN] Traditionally, when lighting a given space projects is done intuitively, improving the design by the method of trial and error, based solely on his own will or individual preferences and regardless of knowledge of research in lighting or the needs and preferences of the end user. Sometimes, this system becomes costly and inefficient since all design responsibility lies with the will of the designers. On the other hand, research in lighting has also been removed from the world of lighting designer and user. Studies that have tried to analyze the user response to the bright atmosphere come from the field of psychology or engineering and have not taken into account in studying the parameters of light design that can respond to user needs. The purpose of this paper is to propose a methodology using Kansei Engineering assess the emotional response of users to the lighting in order to design efficient emotionally lit spaces. The proposed methodology can have important implications for the energy efficiency of buildings since it allows the user to know the answer to different lighting features and concentrate efforts on those parameters that are really appreciated by users.[ES] Tradicionalmente, cuando se proyecta la iluminación de un determinado espacio se hace intuitivamente, mejorando el diseño mediante el método de prueba y error, basándose únicamente en la propia voluntad o en las propias preferencias y sin tener en cuenta los conocimientos de la investigación en iluminación o las necesidades y las preferencias del usuario final. En ocasiones, este sistema deviene costoso e ineficiente ya que toda la responsabilidad del diseño recae en la voluntad de los diseñadores. Por otro lado, la investigación en iluminación también ha estado alejada del mundo del diseñador de la iluminación y del usuario. Los estudios que han tratado de analizar la respuesta de los usuarios ante el ambiente luminoso proceden del ámbito de la psicología o de la ingeniería y no han tenido en cuenta en sus estudios los parámetros del diseño luminoso que puedan dar respuesta a las necesidades del usuario. El objeto del presente trabajo es proponer una metodología que mediante el uso de la Ingeniería Kansei evalúe la respuesta emocional de los usuarios ante la iluminación con el objeto de diseñar espacios iluminados emocionalmente eficientes. La metodología propuesta puede tener importantes implicaciones en la eficiencia energética de los edificios ya que permite conocer la respuesta del usuario ante distintas características de la iluminación y concentrar los esfuerzos en aquellos parámetros que realmente sean apreciadospor los usuarios.Castilla Cabanes, N.; Llinares Millán, MDC.; Blanca Giménez, V. (2016). Ingeniería Kansei aplicada al diseño lumínico de espacios emocionales. Anales de Edificación. 2(1):7-11. doi:10.20868/ade.2016.3192S7112

    CARACTERÍSTICAS Y DIMENSIONADO DE LA LÍNEA GENERAL DE ALIMENTACIÓN (LGA) DE UN EDIFICIO DE VIVIENDAS

    Full text link
    La Línea General de Alimentación (LGA) forma parte de la Instalación de Enlace y suministra toda la potencia eléctrica que demanda el edificio. En este artículo vamos a definir las características de las Líneas Generales de Alimentación de los edificios de viviendas y vamos a explicar cómo se dimensionan.Martínez Antón, A.; Blanca Giménez, V.; Castilla Cabanes, N.; Pastor Villa, RM. (2011). CARACTERÍSTICAS Y DIMENSIONADO DE LA LÍNEA GENERAL DE ALIMENTACIÓN (LGA) DE UN EDIFICIO DE VIVIENDAS. http://hdl.handle.net/10251/1086
    corecore