170 research outputs found

    Effect of Sulindac Sulfide on Metallohydrolases in the Human Colon Cancer Cell Line HT-29

    Get PDF
    Matrix metalloproteinase 7 (MMP7), a metallohydrolase involved in the development of several cancers, is downregulated in the ApcMin/+ colon cancer mouse model following sulindac treatment. To determine whether this effect is relevant to the human condition, HT-29 human colon cancer cells were treated with sulindac and its metabolites, and compared to results obtained from in vivo mouse studies. The expression of MMP7 was monitored. The results demonstrated that sulindac sulfide effectively downregulated both MMP7 expression and activity. Furthermore, activity-based proteomics demonstrated that sulindac sulfide dramatically decreased the activity of leukotriene A4 hydrolase in HT-29 cells as reflected by a decrease in the level of its product, leukotriene B4. This study demonstrates that the effect of sulindac treatment in a mouse model of colon cancer may be relevant to the human counterpart and highlights the effect of sulindac treatment on metallohydrolases

    G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tazarotene-induced gene 1 (TIG1) is a retinoid-inducible type II tumour suppressor gene. The B isoform of TIG1 (TIG1B) inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform are yet to be reported. Therefore, this study investigated the effects of the TIG1A and TIG1B isoforms on cell growth and gene expression profiles using colon cancer cells.</p> <p>Methods</p> <p>TIG1A and TIG1B stable clones derived from HCT116 and SW620 colon cancer cells were established using the GeneSwitch system; TIG1 isoform expression was induced by mifepristone treatment. Cell growth was assessed using the WST-1 cell proliferation and colony formation assays. RNA interference was used to examine the TIG1 mediating changes in cell growth. Gene expression profiles were determined using microarray and validated using real-time polymerase chain reaction, and Western blot analyses.</p> <p>Results</p> <p>Both TIG1 isoforms were expressed at high levels in normal prostate and colon tissues and were downregulated in colon cancer cell lines. Both TIG1 isoforms significantly inhibited the growth of transiently transfected HCT116 cells and stably expressing TIG1A and TIG1B HCT116 and SW620 cells. Expression of 129 and 55 genes was altered upon induction of TIG1A and TIG1B expression, respectively, in stably expressing HCT116 cells. Of the genes analysed, 23 and 6 genes were upregulated and downregulated, respectively, in both TIG1A and TIG1B expressing cells. Upregulation of the G-protein-coupled receptor kinase 5 (GRK5) was confirmed using real-time polymerase chain reaction and Western blot analyses in both TIG1 stable cell lines. Silencing of TIG1A or GRK5 expression significantly decreased TIG1A-mediated cell growth suppression.</p> <p>Conclusions</p> <p>Expression of both TIG1 isoforms was observed in normal prostate and colon tissues and was downregulated in colon cancer cell lines. Both TIG1 isoforms suppressed cell growth and stimulated GRK5 expression in HCT116 and SW620 cells. Knockdown of GRK5 expression alleviated TIG1A-induced growth suppression of HCT116 cells, suggesting that GRK5 mediates cell growth suppression by TIG1A. Thus, TIG1 may participate in the downregulation of G-protein coupled signaling by upregulating GRK5 expression.</p

    The utility of Aspirin in dukes C and high risk dukes B colorectal cancer - The ASCOLT study: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High quality evidence indicates that aspirin is effective in reducing colorectal polyps; and numerous epidemiological studies point towards an ability to prevent colorectal cancer. However the role of Aspirin as an adjuvant agent in patients with established cancers remains to be defined. Recently a nested case-control study within the Nurses Health cohort suggested that the initiation of Aspirin <it>after </it>the diagnosis of colon cancer reduced overall colorectal cancer specific mortality. Although this data is supportive of Aspirin's biological activity in this disease and possible role in adjuvant therapy, it needs to be confirmed in a randomized prospective trial.</p> <p>Methods/Design</p> <p>We hypothesize through this randomized, placebo-controlled adjuvant study, that Aspirin in patients with dukes C or high risk dukes B colorectal cancer (ASCOLT) can improve survival in this patient population over placebo control. The primary endpoint of this study is Disease Free Survival and the secondary Endpoint is 5 yr Overall Survival. This study will randomize eligible patients with Dukes C or high risk Dukes B colorectal cancer, after completion of surgery and standard adjuvant chemotherapy (+/- radiation therapy for rectal cancer patients) to 200 mg Aspirin or Placebo for 3 years. Stratification factors include study centre, rectal or colon cancer stage, and type of adjuvant chemotherapy (exposed/not exposed to oxaliplatin). After randomization, patient will be followed up with 3 monthly assessments whilst on study drug and for a total of 5 years. Patients with active peptic ulcer disease, bleeding diathesis or on treatment with aspirin or anti-platelet agents will be excluded from the study.</p> <p>Discussion</p> <p>This study aims to evaluate Aspirin's role as an adjuvant treatment in colorectal cancer. If indeed found to be beneficial, because aspirin is cheap, accessible and easy to administer, it will positively impact the lives of many individuals in Asia and globally.</p> <p>Trials Registration</p> <p>Clinicaltrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00565708">NCT00565708</a></p

    The activating mutation R201C in GNAS promotes intestinal tumourigenesis in Apc(Min/+) mice through activation of Wnt and ERK1/2 MAPK pathways.

    Get PDF
    Somatically acquired, activating mutations of GNAS, the gene encoding the stimulatory G-protein Gsalpha subunit, have been identified in kidney, thyroid, pituitary, leydig cell, adrenocortical and, more recently, in colorectal tumours, suggesting that mutations such as R201C may be oncogenic in these tissues. To study the role of GNAS in intestinal tumourigenesis, we placed GNAS R201C under the control of the A33-antigen promoter (Gpa33), which is almost exclusively expressed in the intestines. The GNAS R201C mutation has been shown to result in the constitutive activation of Gsalpha and adenylate cyclase and to lead to the autonomous synthesis of cyclic adenosine monophosphate (cAMP). Gpa33(tm1(GnasR201C)Wtsi/+) mice showed significantly elevated cAMP levels and a compensatory upregulation of cAMP-specific phosphodiesterases in the intestinal epithelium. GNAS R201C alone was not sufficient to induce tumourigenesis by 12 months, but there was a significant increase in adenoma formation when Gpa33(tm1(GnasR201C)Wtsi/+) mice were bred onto an Apc(Min/+) background. GNAS R201C expression was associated with elevated expression of Wnt and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK) pathway target genes, increased phosphorylation of ERK1/2 MAPK and increased immunostaining for the proliferation marker Ki67. Furthermore, the effects of GNAS R201C on the Wnt pathway were additive to the inactivation of Apc. Our data strongly suggest that activating mutations of GNAS cooperate with inactivation of APC and are likely to contribute to colorectal tumourigenesis

    Targeting KSHV/HHV-8 Latency with COX-2 Selective Inhibitor Nimesulide: A Potential Chemotherapeutic Modality for Primary Effusion Lymphoma

    Get PDF
    The significance of inflammation in KSHV biology and tumorigenesis prompted us to examine the role of COX-2 in primary effusion lymphoma (PEL), an aggressive AIDS-linked KSHV-associated non-Hodgkin's lymphoma (NHL) using nimesulide, a well-known COX-2 specific NSAID. We demonstrate that (1) nimesulide is efficacious in inducing proliferation arrest in PEL (KSHV+/EBV-; BCBL-1 and BC-3, KSHV+/EBV+; JSC-1), EBV-infected (KSHV-/EBV+; Raji) and non-infected (KSHV-/EBV-; Akata, Loukes, Ramos, BJAB) high malignancy human Burkitt's lymphoma (BL) as well as KSHV-/EBV+ lymphoblastoid (LCL) cell lines; (2) nimesulide is selectively toxic to KSHV infected endothelial cells (TIVE-LTC) compared to TIVE and primary endothelial cells (HMVEC-d); (3) nimesulide reduced KSHV latent gene expression, disrupted p53-LANA-1 protein complexes, and activated the p53/p21 tumor-suppressor pathway; (4) COX-2 inhibition down-regulated cell survival kinases (p-Akt and p-GSK-3β), an angiogenic factor (VEGF-C), PEL defining genes (syndecan-1, aquaporin-3, and vitamin-D3 receptor) and cell cycle proteins such as cyclins E/A and cdc25C; (5) nimesulide induced sustained cell death and G1 arrest in BCBL-1 cells; (6) nimesulide substantially reduced the colony forming capacity of BCBL-1 cells. Overall, our studies provide a comprehensive molecular framework linking COX-2 with PEL pathogenesis and identify the chemotherapeutic potential of nimesulide in treating PEL

    Modulation of β-Catenin Signaling by Glucagon Receptor Activation

    Get PDF
    The glucagon receptor (GCGR) is a member of the class B G protein–coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA) pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin–mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R) and glucagon-like peptide 1 (GLP-1R) receptors. Since low-density-lipoprotein receptor–related protein 5 (Lrp5) is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter–mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1) or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations

    Quercetin Suppresses Cyclooxygenase-2 Expression and Angiogenesis through Inactivation of P300 Signaling

    Get PDF
    Quercetin, a polyphenolic bioflavonoid, possesses multiple pharmacological actions including anti-inflammatory and antitumor properties. However, the precise action mechanisms of quercetin remain unclear. Here, we reported the regulatory actions of quercetin on cyclooxygenase-2 (COX-2), an important mediator in inflammation and tumor promotion, and revealed the underlying mechanisms. Quercetin significantly suppressed COX-2 mRNA and protein expression and prostaglandin (PG) E(2) production, as well as COX-2 promoter activation in breast cancer cells. Quercetin also significantly inhibited COX-2-mediated angiogenesis in human endothelial cells in a dose-dependent manner. The in vitro streptavidin-agarose pulldown assay and in vivo chromatin immunoprecipitation assay showed that quercetin considerably inhibited the binding of the transactivators CREB2, C-Jun, C/EBPβ and NF-κB and blocked the recruitment of the coactivator p300 to COX-2 promoter. Moreover, quercetin effectively inhibited p300 histone acetyltransferase (HAT) activity, thereby attenuating the p300-mediated acetylation of NF-κB. Treatment of cells with p300 HAT inhibitor roscovitine was as effective as quercetin at inhibiting p300 HAT activity. Addition of quercetin to roscovitine-treated cells did not change the roscovitine-induced inhibition of p300 HAT activity. Conversely, gene delivery of constitutively active p300 significantly reversed the quercetin-mediated inhibition of endogenous HAT activity. These results indicate that quercetin suppresses COX-2 expression by inhibiting the p300 signaling and blocking the binding of multiple transactivators to COX-2 promoter. Our findings therefore reveal a novel mechanism of action of quercetin and suggest a potential use for quercetin in the treatment of COX-2-mediated diseases such as breast cancers

    Beta catenin and cytokine pathway dysregulation in patients with manifestations of the "PTEN hamartoma tumor syndrome"

    Get PDF
    Background. The "PTEN hamartoma tumor syndrome" (PHTS) includes a group of syndromes caused by germline mutations within the tumor suppressor gene "phosphatase and tensin homolog deleted on chromosome ten" (PTEN), characterized by multiple polyps in the gastrointestinal tract and by a highly increased risk of developing malignant tumours in many tissues. The current work clarifies the molecular basis of PHTS in three unrelated Italian patients, and sheds light on molecular pathway disregulation constitutively associated to PTEN alteration. Methods. We performed a combination of RT-PCR, PCR, sequencing of the amplified fragments, Real Time PCR and western blot techniques. Results. Our data provide the first evidence of β-catenin accumulation in blood cells of patients with hereditary cancer syndrome caused by germ-line PTEN alteration. In addition, for the first time we show, in all PHTS patients analysed, alterations in the expression of TNFα, its receptors and IL-10. Importantly, the isoform of TNFRI that lacks the DEATH domain (TNFRSF1β) was found to be overexpressed. Conclusion. In light of our findings, we suggest that the PTEN pathway disregulation could determine, in non-neoplastic cells of PHTS patients, cell survival and pro-inflammatory stimulation, mediated by the expression of molecules such as β-catenin, TNFα and TNFα receptors, which could predispose these patients to the development of multiple cancers

    Paracrine cyclooxygenase-2 activity by macrophages drives colorectal adenoma progression in the Apc Min/+ mouse model of intestinal tumorigenesis

    Get PDF
    Genetic deletion or pharmacological inhibition of cyclooxygenase (COX)-2 abrogates intestinal adenoma development at early stages of colorectal carcinogenesis. COX-2 is localised to stromal cells (predominantly macrophages) in human and mouse intestinal adenomas. Therefore, we tested the hypothesis that paracrine Cox-2-mediated signalling from macrophages drives adenoma growth and progression in vivo in the ApcMin/+ mouse model of intestinal tumorigenesis. Using a transgenic C57Bl/6 mouse model of Cox-2 over-expression driven by the chicken lysozyme locus (cLys-Cox-2), which directs integration site-independent, copy number-dependent transgene expression restricted to macrophages, we demonstrated that stromal macrophage Cox-2 in colorectal (but not small intestinal) adenomas from cLys-Cox-2 x ApcMin/+ mice was associated with significantly increased tumour size (P = 0.025) and multiplicity (P = 0.025), compared with control ApcMin/+ mice. Transgenic macrophage Cox-2 expression was associated with increased dysplasia, epithelial cell Cox-2 expression and submucosal tumour invasion, as well as increased nuclear β-catenin translocation in dysplastic epithelial cells. In vitro studies confirmed that paracrine macrophage Cox-2 signalling drives catenin-related transcription in intestinal epithelial cells. Paracrine macrophage Cox-2 activity drives growth and progression of ApcMin/+ mouse colonic adenomas, linked to increased epithelial cell β-catenin dysregulation. Stromal cell (macrophage) gene regulation and signalling represent valid targets for chemoprevention of colorectal cancer

    Autocrine Prostaglandin E2 Signaling Promotes Tumor Cell Survival and Proliferation in Childhood Neuroblastoma

    Get PDF
    Background: Prostaglandin E2 (PGE2) is an important mediator in tumor-promoting inflammation. High expression of cyclooxygenase-2 (COX-2) has been detected in the embryonic childhood tumor neuroblastoma, and treatment with COX inhibitors significantly reduces tumor growth. Here, we have investigated the significance of a high COX-2 expression in neuroblastoma by analysis of PGE2 production, the expression pattern and localization of PGE2 receptors and intracellular signal transduction pathways activated by PGE2. Principal Findings: A high expression of the PGE2 receptors, EP1, EP2, EP3 and EP4 in primary neuroblastomas, independent of biological and clinical characteristics, was detected using immunohistochemistry. In addition, mRNA and protein corresponding to each of the receptors were detected in neuroblastoma cell lines. Immunofluorescent staining revealed localization of the receptors to the cellular membrane, in the cytoplasm, and in the nuclear compartment. Neuroblastoma cells produced PGE2 and stimulation of serum-starved neuroblastoma cells with PGE2 increased the intracellular concentration of calcium and cyclic AMP with subsequent phosphorylation of Akt. Addition of 16,16-dimethyl PGE 2 (dmPGE2) increased cell viability in a time, dose- and cell line-dependent manner. Treatment of neuroblastoma cells with a COX-2 inhibitor resulted in a diminished cell growth and viability that was reversed by the addition of dmPGE2. Similarly, PGE 2 receptor antagonists caused a decrease in neuroblastoma cell viability in a dose-dependent manner
    corecore