3,383 research outputs found
Stripe ordering and two-gap model for underdoped cuprates
The evidence of edge-gaps around the M-points in the metallic state of
underdoped cuprates has triggered a very active debate on their origin. We
first consider the possibility that this spectroscopic feature results from a
quasi-static charge ordering taking place in the underdoped regime. It comes
out that to explain the coexistence of gaps and arcs on the Fermi surface the
charge modulation should be in an eggbox form. In the lack of evidences for
that, we then investigate the local pairing induced by charge-stripe
fluctuations. A proper description of the strong anisotropy of both the
interactions and the Fermi velocities requires a two-gap model for pairing. We
find that a gap due to incoherent pairing forms near the M-points, while
coherence is established by the stiffness of the pairing near the nodal points.
The model allows for a continuos evolution from a pure BCS pairing (over- and
optimally doped regime) to a mixed boson-fermion model (heavily underdoped
regime).Comment: 4 pages, Proceedings of M2S-HTS
Quasi-particle dephasing time in disordered d-wave superconductors
We evaluate the low-temperature cutoff for quantum interference 1/tf induced
in a d-wave superconductor by the diffusion enhanced quasiparticle interactions
in the presence of disorder. We carry out our analysis in the framework of the
non-linear sigma-model which allows a direct calculation of 1/tf, as the mass
of the transverse modes of the theory. Only the triplet amplitude in the
particle-hole channel and the Cooper amplitude with is pairing symmetry
contribute to 1/tf. We discuss the possible relevance of our results to the
present disagreement between thermal transport data in cuprates and the
localization theory for d-wave quasiparticles
Coherence length in superconductors from weak to strong coupling
We study the evolution of the superconducting coherence length from
weak to strong coupling, both within a s-wave and a d-wave lattice model. We
show that the identification of with the Cooper-pair size
in the weak-coupling regime is meaningful only for a fully-gapped (e.g.,
s-wave) superconductor. Instead in the d-wave superconductor, where
diverges, we show that is properly defined as the
characteristic length scale for the correlation function of the modulus of the
superconducting order parameter. The strong-coupling regime is quite
intriguing, since the interplay between particle-particle and particle-hole
channel is no more negligible. In the case of s-wave pairing, which allows for
an analytical treatment, we show that is of order of the lattice
spacing at finite densities. In the diluted regime diverges, recovering
the behavior of the coherence length of a weakly interacting effective bosonic
system. Similar results are expected to hold for d-wave superconductors.Comment: 11 pages, 5 figures. Two appendices and new references adde
Two-gap model for underdoped cuprate superconductors
Various properties of underdoped superconducting cuprates, including the
momentum-dependent pseudogap opening, indicate a behavior which is neither BCS
nor Bose-Einstein condensation (BEC) like. To explain this issue we introduce a
two-gap model. This model assumes an anisotropic pairing interaction among two
kinds of fermions with small and large Fermi velocities representing the
quasiparticles near the M and the nodal points of the Fermi surface
respectively. We find that a gap forms near the M points resulting into
incoherent pairing due to strong fluctuations. Instead the pairing near the
nodal points sets in with phase coherence at lower temperature. By tuning the
momentum-dependent interaction, the model allows for a continuous evolution
from a pure BCS pairing (in the overdoped and optimally doped regime) to a
mixed boson-fermion picture (in the strongly underdoped regime).Comment: 5 pages, 1 enclosed figure. For further information see
http://htcs.or
Charge and spin inhomogeneity as a key to the physics of the high Tc cuprates
We present a coherent scenario for the physics of cuprate superconductors,
which is based on a charge-driven inhomogeneity, i.e. the ``stripe phase''. We
show that spin and charge critical fluctuations near the stripe instability of
strongly correlated electron systems provide an effective interaction between
the quasiparticles, which is strongly momentum, frequency, temperature and
doping dependent. This accounts for the various phenomena occurring in the
overdoped, optimally and underdoped regimes both for the normal and the
superconductive phase.Comment: 6 pages, 1 enclosed figure, proceedings of LT2
Temperature dependence of the optical spectral weight in the cuprates: Role of electron correlations
We compare calculations based on the Dynamical Mean-Field Theory of the
Hubbard model with the infrared spectral weight of
LaSrCuO and other cuprates. Without using fitting parameters we
show that most of the anomalies found in with respect to normal
metals, including the existence of two different energy scales for the doping-
and the -dependence of , can be ascribed to strong correlation
effects.Comment: 4 pages, 3 figures. Minor corrections, corrected some typos and added
reference
X-Ray Resonant Scattering as a Direct Probe of Orbital Ordering in Transition-Metal Oxides
X-ray resonant scattering at the K-edge of transition metal oxides is shown
to measure the orbital order parameter, supposed to accompany magnetic ordering
in some cases. Virtual transitions to the 3d-orbitals are quadrupolar in
general. In cases with no inversion symmetry, such as VO, treated in
detail here, a dipole component enhances the resonance. Hence, we argue that
the detailed structure of orbital order in VO is experimentally
accessible.Comment: LaTex using RevTex, 4 pages and two included postscript figure
Marginal Fermi liquid behavior from 2d Coulomb interaction
A full, nonperturbative renormalization group analysis of interacting
electrons in a graphite layer is performed, in order to investigate the
deviations from Fermi liquid theory that have been observed in the experimental
measures of a linear quasiparticle decay rate in graphite. The electrons are
coupled through Coulomb interactions, which remain unscreened due to the
semimetallic character of the layer. We show that the model flows towards the
noninteracting fixed-point for the whole range of couplings, with logarithmic
corrections which signal the marginal character of the interaction separating
Fermi liquid and non-Fermi liquid regimes.Comment: 7 pages, 2 Postscript figure
Noncommutative geometry and physics: a review of selected recent results
This review is based on two lectures given at the 2000 TMR school in Torino.
We discuss two main themes: i) Moyal-type deformations of gauge theories, as
emerging from M-theory and open string theories, and ii) the noncommutative
geometry of finite groups, with the explicit example of Z_2, and its
application to Kaluza-Klein gauge theories on discrete internal spaces.Comment: Based on lectures given at the TMR School on contemporary string
theory and brane physics, Jan 26- Feb 2, 2000, Torino, Italy. To be published
in Class. Quant. Grav. 17 (2000). 3 ref.s added, typos corrected, formula on
exterior product of n left-invariant one-forms corrected, small changes in
the Sect. on integratio
- …