725 research outputs found

    Polaronic metal phases in La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} uncovered by inelastic neutron and x-ray scattering

    Full text link
    Among colossal magnetoresistive manganites the prototypical ferromagnetic manganite La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} has a relatively small magnetoresistance, and has been long assumed to have only weak electron-lattice coupling. Here we report that La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} has strong electron-phonon coupling: Our neutron and x-ray scattering experiments show strong softening and broadening of transverse acoustic phonons on heating through the Curie temperature TC_C = 350 K. Simultaneously, we observe two phases where metallic resistivity and polarons coexist. The ferromagnetic polaronic metal phase between 200 K and TC_C is characterized by quasielastic scattering from dynamic CE-type polarons with the relatively short lifetime of τ1ps\mathbf{\tau}\approx 1\,\rm{ps}. This scattering is greatly enhanced above TC_C in the paramagnetic polaronic metal phase. Our results suggest that the strength of magnetoresistance in manganites scales with the inverse of polaron lifetime, not the strength of electron-phonon coupling

    Electronic and magnetic nano phase separation in cobaltates La2x_{2-x}Srx_{x}CoO4_4

    Get PDF
    The single-layer perovskite cobaltates have attracted enormous attention due to the recent observation of hour-glass shaped magnetic excitation spectra which resemble the ones of the famous high-temperature superconducting cuprates. Here, we present an overview of our most recent studies of the spin and charge correlations in floating-zone grown cobaltate single crystals. We find that frustration and a novel kind of electronic and magnetic nano phase separation are intimately connected to the appearance of the hour-glass shaped spin excitation spectra. We also point out the difference between nano phase separation and conventional phase separation.Comment: * plenary talk SUPERSTRIPES conference 201

    Two and Three Dimensional Incommensurate Modulation in Optimally-Doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    X-ray scattering measurements on optimally-doped single crystal samples of the high temperature superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} reveal the presence of three distinct incommensurate charge modulations, each involving a roughly fivefold increase in the unit cell dimension along the {\bf b}-direction. The strongest scattering comes from the well known (H, K±\pm 0.21, L) modulation and its harmonics. However, we also observe broad diffraction which peak up at the L values complementary to those which characterize the known modulated structure. These diffraction features correspond to correlation lengths of roughly a unit cell dimension, ξc\xi_c\sim20 A˚\AA in the {\bf c} direction, and of ξb\xi_b\sim 185 A˚\AA parallel to the incommensurate wavevector. We interpret these features as arising from three dimensional incommensurate domains and the interfaces between them, respectively. In addition we investigate the recently discovered incommensuate modulations which peak up at (1/2, K±\pm 0.21, L) and related wavevectors. Here we explicitly study the L-dependence of this scattering and see that these charge modulations are two dimensional in nature with weak correlations on the scale of a bilayer thickness, and that they correspond to short range, isotropic correlation lengths within the basal plane. We relate these new incommensurate modulations to the electronic nanostructure observed in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using STM topography.Comment: 8 pages, 8 figure

    High Resolution Study of Spin Excitations in the Shastry-Sutherland Singlet Ground State of SrCu2(BO3)2

    Full text link
    High resolution, inelastic neutron scattering measurements on SrCu2(BO3)2 reveal the dispersion of the three single triplet excitations continuously across the (H,0) direction within its tetragonal basal plane. These measurements also show distinct Q dependencies for the single and multiple triplet excitations, and that these excitations are largely dispersionless perpendicular to this plane. The temperature dependence of the intensities of these excitations is well described as the complement of the dc-susceptibility of SrCu2(BO3)2.Comment: 4 pages, 4 figures. Submitted to PR

    High resolution X-ray scattering studies of structural phase transitions in underdoped La2x_{2-x}Bax_xCuO4_4

    Full text link
    We have studied structural phase transitions in high quality underdoped La2x_{2-x}Bax_xCuO4_4 single crystals using high resolution x-ray scattering techniques. Critical properties associated with the continuous High Temperature Tetragonal (HTT, I4/mmmI4/mmm) to Middle Temperature Orthorhombic (MTO, CmcaCmca) phase transition were investigated in single crystal samples with x=0.125, 0.095, and 0.08 and we find that all behavior is consistent with three dimensional XY criticality, as expected from theory. Power law behavior in the orthorhombic strain, 2(a-b)/(a+b), is observed over a remarkably wide temperature range, spanning most of the MTO regime in the phase diagram. Low temperature measurements investigating the Low Temperature Tetragonal (LTT, P42/ncmP4_{2}/ncm) phase, below the strongly discontinuous MTO\toLTT phase transition, in x=0.125 and x=0.095 samples show that the LTT phase is characterized by relatively broad Bragg scattering, compared with that observed at related wavevectors in the HTT phase. This shows that the LTT phase is either an admixture of tetragonal and orthorhombic phases, or that it is orthorhombic with very small orthorhombic strain, consistent with the ``less orthorhombic" low temperature structure previously reported in mixed La2x_{2-x}Srxy_{x-y}Bay_yCuO4_4 single crystals. We compare the complex temperature-composition phase diagram for the location of structural and superconducting phase transitions in underdoped La2x_{2-x}Bax_xCuO4_4 and find good agreement with results obtained on polycrystalline samples.Comment: 8 pages, 7 figures, 1 tabl

    Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides La2x_{2-x}Srx_xCoO4_4

    Get PDF
    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.Comment: Nature Communications 5, 5731 (2014

    Long-range antiferromagnetic order in the S=1 chain compound LiVGe2O6

    Full text link
    The phase transition in the compound LiVGe2O6 has been proposed as a unique example of a spin-Peierls transition in an S=1 antiferromagnetic chain. We report neutron and x-ray diffraction measurements of LiVGe2O6 above and below the phase transition at T=24 K. No evidence is seen for any structural distortion associated with the transition. The neutron results indicate that the low temperature state is antiferromagnetic, driven by ferromagnetic interchain couplings.Comment: 4 pages, 4 ps figures, REVTEX, submitted to PR
    corecore