725 research outputs found
Polaronic metal phases in LaSrMnO uncovered by inelastic neutron and x-ray scattering
Among colossal magnetoresistive manganites the prototypical ferromagnetic
manganite LaSrMnO has a relatively small
magnetoresistance, and has been long assumed to have only weak electron-lattice
coupling. Here we report that LaSrMnO has strong
electron-phonon coupling: Our neutron and x-ray scattering experiments show
strong softening and broadening of transverse acoustic phonons on heating
through the Curie temperature T = 350 K. Simultaneously, we observe two
phases where metallic resistivity and polarons coexist. The ferromagnetic
polaronic metal phase between 200 K and T is characterized by quasielastic
scattering from dynamic CE-type polarons with the relatively short lifetime of
. This scattering is greatly enhanced above
T in the paramagnetic polaronic metal phase. Our results suggest that the
strength of magnetoresistance in manganites scales with the inverse of polaron
lifetime, not the strength of electron-phonon coupling
Electronic and magnetic nano phase separation in cobaltates LaSrCoO
The single-layer perovskite cobaltates have attracted enormous attention due
to the recent observation of hour-glass shaped magnetic excitation spectra
which resemble the ones of the famous high-temperature superconducting
cuprates. Here, we present an overview of our most recent studies of the spin
and charge correlations in floating-zone grown cobaltate single crystals. We
find that frustration and a novel kind of electronic and magnetic nano phase
separation are intimately connected to the appearance of the hour-glass shaped
spin excitation spectra. We also point out the difference between nano phase
separation and conventional phase separation.Comment: * plenary talk SUPERSTRIPES conference 201
Two and Three Dimensional Incommensurate Modulation in Optimally-Doped BiSrCaCuO
X-ray scattering measurements on optimally-doped single crystal samples of
the high temperature superconductor BiSrCaCuO reveal
the presence of three distinct incommensurate charge modulations, each
involving a roughly fivefold increase in the unit cell dimension along the {\bf
b}-direction. The strongest scattering comes from the well known (H, K
0.21, L) modulation and its harmonics. However, we also observe broad
diffraction which peak up at the L values complementary to those which
characterize the known modulated structure. These diffraction features
correspond to correlation lengths of roughly a unit cell dimension,
20 in the {\bf c} direction, and of 185
parallel to the incommensurate wavevector. We interpret these features as
arising from three dimensional incommensurate domains and the interfaces
between them, respectively. In addition we investigate the recently discovered
incommensuate modulations which peak up at (1/2, K 0.21, L) and related
wavevectors. Here we explicitly study the L-dependence of this scattering and
see that these charge modulations are two dimensional in nature with weak
correlations on the scale of a bilayer thickness, and that they correspond to
short range, isotropic correlation lengths within the basal plane. We relate
these new incommensurate modulations to the electronic nanostructure observed
in BiSrCaCuO using STM topography.Comment: 8 pages, 8 figure
High Resolution Study of Spin Excitations in the Shastry-Sutherland Singlet Ground State of SrCu2(BO3)2
High resolution, inelastic neutron scattering measurements on SrCu2(BO3)2
reveal the dispersion of the three single triplet excitations continuously
across the (H,0) direction within its tetragonal basal plane. These
measurements also show distinct Q dependencies for the single and multiple
triplet excitations, and that these excitations are largely dispersionless
perpendicular to this plane. The temperature dependence of the intensities of
these excitations is well described as the complement of the dc-susceptibility
of SrCu2(BO3)2.Comment: 4 pages, 4 figures. Submitted to PR
High resolution X-ray scattering studies of structural phase transitions in underdoped LaBaCuO
We have studied structural phase transitions in high quality underdoped
LaBaCuO single crystals using high resolution x-ray scattering
techniques. Critical properties associated with the continuous High Temperature
Tetragonal (HTT, ) to Middle Temperature Orthorhombic (MTO, )
phase transition were investigated in single crystal samples with x=0.125,
0.095, and 0.08 and we find that all behavior is consistent with three
dimensional XY criticality, as expected from theory. Power law behavior in the
orthorhombic strain, 2(a-b)/(a+b), is observed over a remarkably wide
temperature range, spanning most of the MTO regime in the phase diagram. Low
temperature measurements investigating the Low Temperature Tetragonal (LTT,
) phase, below the strongly discontinuous MTOLTT phase
transition, in x=0.125 and x=0.095 samples show that the LTT phase is
characterized by relatively broad Bragg scattering, compared with that observed
at related wavevectors in the HTT phase. This shows that the LTT phase is
either an admixture of tetragonal and orthorhombic phases, or that it is
orthorhombic with very small orthorhombic strain, consistent with the ``less
orthorhombic" low temperature structure previously reported in mixed
LaSrBaCuO single crystals. We compare the complex
temperature-composition phase diagram for the location of structural and
superconducting phase transitions in underdoped LaBaCuO and
find good agreement with results obtained on polycrystalline samples.Comment: 8 pages, 7 figures, 1 tabl
Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides LaSrCoO
The magnetic excitations in the cuprate superconductors might be essential
for an understanding of high-temperature superconductivity. In these cuprate
superconductors the magnetic excitation spectrum resembles an hour-glass and
certain resonant magnetic excitations within are believed to be connected to
the pairing mechanism which is corroborated by the observation of a universal
linear scaling of superconducting gap and magnetic resonance energy. So far,
charge stripes are widely believed to be involved in the physics of hour-glass
spectra. Here we study an isostructural cobaltate that also exhibits an
hour-glass magnetic spectrum. Instead of the expected charge stripe order we
observe nano phase separation and unravel a microscopically split origin of
hour-glass spectra on the nano scale pointing to a connection between the
magnetic resonance peak and the spin gap originating in islands of the
antiferromagnetic parent insulator. Our findings open new ways to theories of
magnetic excitations and superconductivity in cuprate superconductors.Comment: Nature Communications 5, 5731 (2014
Long-range antiferromagnetic order in the S=1 chain compound LiVGe2O6
The phase transition in the compound LiVGe2O6 has been proposed as a unique
example of a spin-Peierls transition in an S=1 antiferromagnetic chain. We
report neutron and x-ray diffraction measurements of LiVGe2O6 above and below
the phase transition at T=24 K. No evidence is seen for any structural
distortion associated with the transition. The neutron results indicate that
the low temperature state is antiferromagnetic, driven by ferromagnetic
interchain couplings.Comment: 4 pages, 4 ps figures, REVTEX, submitted to PR
- …
