387 research outputs found

    The Yellow Coral Dendrophyllia cornigera in a Warming Ocean

    Get PDF
    Ocean warming is expected to impinge detrimentally on marine ecosystems worldwide up to impose extreme environmental conditions capable to potentially jeopardize the good ecological status of scleractinian coral reefs at shallow and bathyal depths. The integration of literature records with newly acquired remotely operated vehicle (ROV) data provides an overview of the geographic distribution of the temperate coral Dendrophyllia cornigera spanning the eastern Atlantic Ocean to the whole Mediterranean Sea. In addition, we extracted temperature values at each occurrence site to define the natural range of this coral, known to maintain its physiological processes at 16\ub0C. Our results document a living temperature range between 3c7\ub0C and 17\ub0C, suggesting that the natural thermal tolerance of this eurybathic coral may represent an advantage for its survival in a progressively warming ocean

    Magnetic and structural quantum phase transitions in CeCu6-xAux are independent

    Full text link
    The heavy-fermion compound CeCu6−x_{6-x}Aux_x has become a model system for unconventional magnetic quantum criticality. For small Au concentrations 0≤x<0.160 \leq x < 0.16, the compound undergoes a structural transition from orthorhombic to monoclinic crystal symmetry at a temperature TsT_{s} with Ts→0T_{s} \rightarrow 0 for x≈0.15x \approx 0.15. Antiferromagnetic order sets in close to x≈0.1x \approx 0.1. To shed light on the interplay between quantum critical magnetic and structural fluctuations we performed neutron-scattering and thermodynamic measurements on samples with 0≤x≤0.30 \leq x\leq 0.3. The resulting phase diagram shows that the antiferromagnetic and monoclinic phase coexist in a tiny Au concentration range between x≈0.1x\approx 0.1 and 0.150.15. The application of hydrostatic and chemical pressure allows to clearly separate the transitions from each other and to explore a possible effect of the structural transition on the magnetic quantum critical behavior. Our measurements demonstrate that at low temperatures the unconventional quantum criticality exclusively arises from magnetic fluctuations and is not affected by the monoclinic distortion.Comment: 5 pages, 3 figure

    Structural Fluctuations in the Spin Liquid State of Tb2Ti2O7

    Full text link
    High resolution X-ray scattering measurements on single crystal Tb2Ti2O7 reveal finite structural correlations at low temperatures. This geometrically frustrated pyrochlore is known to exhibit a spin liquid, or cooperative paramagnetic state, at temperatures below ~ 20 K. Parametric studies of structural Bragg peaks appropriate to the Fd3ˉ\bar{3}m space group of Tb2Ti2O7 reveal substantial broadening and peak intensity reduction in the temperature regime 20 K to 300 mK. We also observe a small, anomalous lattice expansion on cooling below a density maximum at ~ 18 K. These measurements are consistent with the development of fluctuations above a cooperative Jahn-Teller, cubic-tetragonal phase transition at very low temperatures.Comment: 5 pages, 4 figures, submitted for publicatio

    Doping Dependence of Polaron Hopping Energies in La(1-x)Ca(x)MnO(3) (0<= x<= 0.15)

    Full text link
    Measurements of the low-frequency (f<= 100 kHz) permittivity at T<= 160 K and dc resistivity (T<= 430 K) are reported for La(1-x)Ca(x)MnO(3) (0<= x<= 0.15). Static dielectric constants are determined from the low-T limiting behavior of the permittivity. The estimated polarizability for bound holes ~ 10^{-22} cm^{-3} implies a radius comparable to the interatomic spacing, consistent with the small polaron picture established from prior transport studies near room temperature and above on nearby compositions. Relaxation peaks in the dielectric loss associated with charge-carrier hopping yield activation energies in good agreement with low-T hopping energies determined from variable-range hopping fits of the dc resistivity. The doping dependence of these energies suggests that the orthorhombic, canted antiferromagnetic ground state tends toward an insulator-metal transition that is not realized due to the formation of the ferromagnetic insulating state near Mn(4+) concentration ~ 0.13.Comment: PRB in press, 5 pages, 6 figure

    Electronic and magnetic nano phase separation in cobaltates La2−x_{2-x}Srx_{x}CoO4_4

    Get PDF
    The single-layer perovskite cobaltates have attracted enormous attention due to the recent observation of hour-glass shaped magnetic excitation spectra which resemble the ones of the famous high-temperature superconducting cuprates. Here, we present an overview of our most recent studies of the spin and charge correlations in floating-zone grown cobaltate single crystals. We find that frustration and a novel kind of electronic and magnetic nano phase separation are intimately connected to the appearance of the hour-glass shaped spin excitation spectra. We also point out the difference between nano phase separation and conventional phase separation.Comment: * plenary talk SUPERSTRIPES conference 201

    Anomalous transverse optical phonons in SnTe and PbTe

    Get PDF
    We present a study of the soft transverse optic phonon mode in SnTe in comparison to the corresponding mode in PbTe using inelastic neutron scattering and ab initio lattice dynamical calculations. In contrast to previous reports our calculations predict that the soft mode in SnTe features a strongly asymmetric spectral weight distribution qualitatively similar to that found in PbTe. Experimentally, we find that the overall width in energy of the phonon peaks is comparable in our neutron scattering spectra for SnTe and PbTe. We observe the well-known double-peaklike signature of the TO mode in PbTe even down to T=5K, questioning its proposed origin purely based on phonon-phonon scattering. The proximity to the incipient ferroelectric transition in PbTe likely plays an important role not included in current models
    • …
    corecore