44 research outputs found

    Desarrollo del diagrama de estado del gel-colágeno para la impresión de alimentos 3D

    Full text link
    [EN] This project aims to build and cook food complex structures using 3D printing. It will be based on the physicochemical characterization and kinetics obtaining collagen gel (cooling curves). This requires getting the diagram state of collagen-gel using techniques such as differential scanning calorimetry. Also it will be determined these second-order transitions by thermal and kinetic conductimetric analysis. Subsequently the viscoelastic properties of the different states of gelation were characterized by testing texture.[ES] El presente proyecto tiene como objetivo construir y cocinar estructuras alimentarias complejas mediante impresión 3D. Se basará en la caracterización fisicoquímica y obtención de las cinéticas de gelificación del colágeno (curvas de enfriamiento). Para ello se debe obtener el diagrama de los distintos estados de gelificación de colágeno mediante técnicas como la calorimetría diferencial de barrido. También se determinaran en dichas transiciones de segundo orden las cinéticas mediante análisis térmicos y conductimétricos. Posteriormente se caracterizaran las propiedades viscoelasticas de los distintos estados de gelificación mediante ensayos de textura.Castelblanque Yuste, EM. (2015). Desarrollo del diagrama de estado del gel-colágeno para la impresión de alimentos 3D http://hdl.handle.net/10251/54286.TFG

    Adaptation to environmental unpredictability in rotifers: an experimental evolution approach

    Get PDF
    Organisms living in changing environments might develop evolutionary responses in order to deal with environmental unpredictability. It is remarkable that selection due to environmental unpredictability can act on multiple traits of the life cycle to reduce the impact of environmental variability. Cyclically parthenogenetic rotifers inhabiting time varying water bodies are expected to develop evolutionary responses to cope with environmental unpredictability. In this thesis the first objective was to study the adaptive response of life-history traits related to diapause in the rotifer Brachionus plicatilis using an experimental evolution approach. This experimental approach has been recognised as a powerful tool to detect short-term evolutionary response under controlled conditions. Laboratory populations of B. plicatilis were subjected to two contrasting selective regimes (predictable vs unpredictable) during eight cycles of selection. These laboratory populations showed rapid adaptation to unpredictable environments, displaying a divergent response in those life-history traits. Populations subjected to the unpredictable selective regime showed both lower hatching fractions of diapausing eggs and earlier sex initiation, suggesting that bet hedging strategies underlie adaptation to environmental unpredictability in these organisms. The second objective was to elucidate the genomic basis of adaptation to environmental unpredictability of B. plicatilis populations, using genomic technologies. Genotyping by sequencing (GBS) was performed on clones from both selective regimes after the seventh cycle of selection and bioinformatics analyses also used GBS data from field populations. A total of 6,107 single nucleotide polymorphisms (SNPs) were identified and genotyped. Three SNPs strongly shifted their allele frequencies in response to environmental unpredictability being candidates to be under selection in these environments and five SNPs associated with the two life-history traits related to diapause were identified. The third objective was to explore the genetic expression in diapausing eggs produced by the same rotifer populations at the end of the evolution experiment, which were indeed subjected to conditions either promoting or blocking hatching. As a result of RNA-seq, a total of 3,068 differentially expressed genes were identified in the diapausing eggs. The comparative transcriptome analyses revealed that genes related with diapause maintenance and termination are differentially expressed under the two selective regimes. This study extends the knowledge of the complex molecular and cellular events that take place during diapause. In conclusion, this thesis supports that laboratory populations of B. plicatilis can develop rapid evolutionary responses to cope with environmental unpredictability and contributes to the empirical evidence of bet hedging

    Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes

    Get PDF
    In unpredictable environments in which reliable cues for predicting environmental variation are lacking, a diversifying bet-hedging strategy for diapause exit is expected to evolve, whereby only a portion of diapausing forms will resume development at the first occurrence of suitable conditions. This study focused on diapause termination in the rotifer Brachionus plicatilis s.s., addressing the transcriptional profile of diapausing eggs from environments differing in the level of predictability and the relationship of such profiles with hatching patterns. RNA-Seq analyses revealed significant differences in gene expression between diapausing eggs produced in the laboratory under combinations of two contrasting selective regimes of environmental fluctuation (predictable vs unpredictable) and two different diapause conditions (passing or not passing through forced diapause). The results showed that the selective regime was more important than the diapause condition in driving differences in the transcriptome profile. Most of the differentially expressed genes were upregulated in the predictable regime and mostly associated with molecular functions involved in embryo morphological development and hatching readiness. This was in concordance with observations of earlier, higher, and more synchronous hatching in diapausing eggs produced under the predictable regime

    Actividades de ocio-tiempo libre y paseo fuera del hogar en ancianos de la provincia de Guadalajara

    Get PDF
    ObjetivoConocer cuáles son las actividades de ocio-tiempo libre y paseo diario en ancianos de la provincia de Guadalajara, en la hipótesis que éstas son susceptibles de mejorarse.DiseñoSe trata de un estudio descriptivo, transversal, de base poblacional.EmplazamientoEfectuado en el ámbito comunitario, en el marco de la atención primaria.ParticipantesPersonas mayores de 65 años, sin deterioro cognitivo y residentes en la comunidad, seleccionados de modo aleatorio a partir de bases de datos poblacionales. La muestra finalmente estudiada está compuesta en el medio rural por 192 varones y 196 mujeres. En el medio urbano por 172 varones y 220 mujeres.IntervencionesCada persona era entrevistada en su domicilio o en el centro de salud según sus preferencias mediante cuestionario, previamente sometido a estudio de estabilidad en las respuestas mediante coeficiente kappa test-retest. Efectuamos cribado de deterioro cognitivo mediante test de Pfeiffer.Resultados principalesCaminan menos de media hora al día en el medio rural un 43,6% (IC, 38,6-48,7) de los ancianos y el 34,4% (IC, 29,8-39,4) en el medio urbano. En el caso de los varones, un 24,7% (IC, 20,4-29,6) y en las mujeres el 51,4% (IC, 46,5-56,3). Las diferencias son significativas en ambos casos. No tienen aficiones en el medio rural un 12,1% (IC, 9,1-15,9) de los ancianos y el 9,4% (IC, 6,8-12,9) en el urbano. En el caso de los varones, un 11,3% (8,3-15,1) y el 10,1% (IC, 7,5-13,5) en las mujeres. No existen diferencias significativas.ConclusionesEs necesario fomentar las actividades de ocio-tiempo libre, pero sobre todo el paseo diario superior a media hora en las personas mayores de 65 años de la provincia de Guadalajara.ObjectiveTo find out what elderly people in the province of Guadalajara do in their leisure/free time and daily walking, in the supposition that these can be improved.DesignThis was a descriptive, crossover study based on a population-group.SettingAt community level, in the primary care context.ParticipantsPeople over 65 without cognitive deterioration and resident in the community, selected at random on the basis of population data bases. The sample finally studied was made up of 192 men and 196 women from the country-side, and 172 men and 220 women from an urban background.InterventionsEveryone was interviewed at home or the health centre according to their preferences through a questionnaire, which had undergone a stability study of the replies beforehand through the kappa test-retest coefficient. We screened cognitive deterioration through the Pfeiffer test.Main resultsIn the country, 43.6% of elderly people (CI: 38.6-48.7) walked under half an hour a day; in the urban context, 34.4% (CI: 29.8-39.4) did so. 24.7% of men (CI: 20.4-29.6) did so; and 51.4% of women (CI: 46.5-56.3). The differences were significant in the two cases. 12.1% (CI: 9.1-15.9) of elderly people in the country had no hobbies, and 9.4% (CI: 6.8-12.9) in the town. Among men and women, this broke down as 11.3% (CI: 8.3-15.1) and 10.1% (CI: 7.5-13.5), respectively. There were no significant differences.ConclusionsLeisure and free time activities among people over 65 in the province of Guadalajara must be fostered; but above all a daily walk for over half an hour must be encouraged

    Multiple facets of laticifer cells

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis inPlant Signaling and Behaviour on 2017, available online: https://www.tandfonline.com/doi/full/10.1080/15592324.2017.1300743"[EN] In the latex-bearing plants, the laticiferous system is the tubing structure that contains the latex and is constituted of living cells (laticifers). While laticifers are present only in a small percentage of the flowering plant species, they represent a type of specialized tissue within the plant where a myriad of metabolites are synthesized, some of them of considerable commercial importance. In this mini-review we synopsize the present knowledge about laticifer cells and discuss about their particular features as well as some evolutionary and ecophysiological cues and the potential exploitation of the knowledge generated around this peculiar type of plant cell. We illustrate some of these questions with the experience in Euphorbia lathyris laticifers and latex.This work was supported by the Spanish MINECO (BFU2015-68199-R to P.V.) and Generalitat Valenciana (Prometeo 2014/024 to P.V.)Castelblanque, L.; Balaguer Zamora, B.; Marti, C.; Rodríguez-Blasco, JJ.; Orozco, M.; Vera Vera, P. (2017). Multiple facets of laticifer cells. Plant Signaling and Behaviour (Online). 12(7):1-5. https://doi.org/10.1080/15592324.2017.1300743S15127Lewinsohn, T. M. (1991). The geographical distribution of plant latex. Chemoecology, 2(1), 64-68. doi:10.1007/bf01240668HAGEL, J., YEUNG, E., & FACCHINI, P. (2008). Got milk? The secret life of laticifers. Trends in Plant Science, 13(12), 631-639. doi:10.1016/j.tplants.2008.09.005Lange, B. M. (2015). The Evolution of Plant Secretory Structures and Emergence of Terpenoid Chemical Diversity. Annual Review of Plant Biology, 66(1), 139-159. doi:10.1146/annurev-arplant-043014-114639Lev-Yadun, S. (2001). Intrusive growth - the plant analog of dendrite and axon growth in animals. New Phytologist, 150(3), 508-512. doi:10.1046/j.1469-8137.2001.00143.xMahlberg, P. G. (1993). Laticifers: An historical perspective. The Botanical Review, 59(1), 1-23. doi:10.1007/bf02856611Serpe, M., Muir, A., & Driouich, A. (2002). Immunolocalization of β- D -glucans, pectins, and arabinogalactan-proteins during intrusive growth and elongation of nonarticulated laticifers in Asclepias speciosa Torr. Planta, 215(3), 357-370. doi:10.1007/s00425-002-0756-yKonno, K. (2011). Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Phytochemistry, 72(13), 1510-1530. doi:10.1016/j.phytochem.2011.02.016Castelblanque, L., Balaguer, B., Marti, C., Rodriguez, J. J., Orozco, M., & Vera, P. (2016). Novel Insights into the Organization of Laticifer Cells: A Cell Comprising a Unified Whole System. Plant Physiology, pp.00954.2016. doi:10.1104/pp.16.00954Biesboer, D. D., & Mahlberg, P. G. (1978). Accumulation of non-utilizable starch in laticifers of Euphorbia heterophylla and E. myrsinites. Planta, 143(1), 5-10. doi:10.1007/bf00389045Nissen, S. J., & Foley, M. E. (1986). No Latex Starch Utilization in Euphorbia esula L. Plant Physiology, 81(2), 696-698. doi:10.1104/pp.81.2.696Xia, Z., Xu, H., Zhai, J., Li, D., Luo, H., He, C., & Huang, X. (2011). RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Molecular Biology, 77(3), 299-308. doi:10.1007/s11103-011-9811-zKitajima, S., Miura, K., Aoki, W., Yamato, K. T., Taira, T., Murakami, R., & Aburaya, S. (2016). Transcriptome and proteome analyses provide insight into laticifer’s defense of Euphorbia tirucalli against pests. Plant Physiology and Biochemistry, 108, 434-446. doi:10.1016/j.plaphy.2016.08.008Rahman, A. Y. A., Usharraj, A. O., Misra, B. B., Thottathil, G. P., Jayasekaran, K., Feng, Y., … Alam, M. (2013). Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics, 14(1), 75. doi:10.1186/1471-2164-14-75Van Bakel, H., Stout, J. M., Cote, A. G., Tallon, C. M., Sharpe, A. G., Hughes, T. R., & Page, J. E. (2011). The draft genome and transcriptome of Cannabis sativa. Genome Biology, 12(10), R102. doi:10.1186/gb-2011-12-10-r102Sato, S., Hirakawa, H., Isobe, S., Fukai, E., Watanabe, A., Kato, M., … Fukui, K. (2010). Sequence Analysis of the Genome of an Oil-Bearing Tree, Jatropha curcas L. DNA Research, 18(1), 65-76. doi:10.1093/dnares/dsq030Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J. H., … Lewis, K. L. T. (2008). The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 452(7190), 991-996. doi:10.1038/nature06856Dussourd, D., & Eisner, T. (1987). Vein-cutting behavior: insect counterploy to the latex defense of plants. Science, 237(4817), 898-901. doi:10.1126/science.3616620Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M., & Kohno, K. (2004). Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. The Plant Journal, 37(3), 370-378. doi:10.1046/j.1365-313x.2003.01968.xHuber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., … Erb, M. (2016). A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLOS Biology, 14(1), e1002332. doi:10.1371/journal.pbio.1002332Pickard, W. F. (2008). Laticifers and secretory ducts: two other tube systems in plants. New Phytologist, 177(4), 877-888. doi:10.1111/j.1469-8137.2007.02323.xBecerra, J. X., & Venable, D. L. (1990). Rapid-Terpene-Bath and «Squirt-Gun» Defense in Bursera schlechtendalii and the Counterploy of Chrysomelid Beetles. Biotropica, 22(3), 320. doi:10.2307/2388545Agrawal, A. A., & Konno, K. (2009). Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense Against Herbivory. Annual Review of Ecology, Evolution, and Systematics, 40(1), 311-331. doi:10.1146/annurev.ecolsys.110308.120307Van Parijs, J., Broekaert, W. F., Goldstein, I. J., & Peumans, W. J. (1991). Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta, 183(2), 258-264. doi:10.1007/bf00197797Souza, D. P., Freitas, C. D. T., Pereira, D. A., Nogueira, F. C., Silva, F. D. A., Salas, C. E., & Ramos, M. V. (2011). Laticifer proteins play a defensive role against hemibiotrophic and necrotrophic phytopathogens. Planta, 234(1), 183-193. doi:10.1007/s00425-011-1392-1Metcalfe, C. R. (1967). Distribution of latex in the plant kingdom. Economic Botany, 21(2), 115-127. doi:10.1007/bf02897859Kliebenstein, D. J. (2013). Making new molecules—evolution of structures for novel metabolites in plants. Current Opinion in Plant Biology, 16(1), 112-117. doi:10.1016/j.pbi.2012.12.004NIELSEN, P. E., NISHIMURA, H., OTVOS, J. W., & CALVIN, M. (1977). Plant Crops as a Source of Fuel and Hydrocarbon-Like Materials. Science, 198(4320), 942-944. doi:10.1126/science.198.4320.942Calvin, M., Nemethy, E. K., Redenbaugh, K., & Otvos, J. W. (1982). Plants as a direct source of fuel. Experientia, 38(1), 18-22. doi:10.1007/bf01944519Kalita, D. (2008). Hydrocarbon plant—New source of energy for future. Renewable and Sustainable Energy Reviews, 12(2), 455-471. doi:10.1016/j.rser.2006.07.00

    Opposing Roles of Plant Laticifer Cells in the Resistance to Insect Herbivores and Fungal Pathogens

    Get PDF
    More than 12,000 plant species (ca. 10% of flowering plants) exude latex when their tissues are injured. Latex is produced and stored in specialized cells named ‘‘laticifers’’. Laticifers form a tubing system composed of rows of elongated cells that branch and create an internal network encompassing the entire plant. Laticifers constitute a recent evolutionary achievement in ecophysiological adaptation to specific natural environments; however, their fitness benefit to the plant still remains to be proven. The identification of Euphorbia lathyris mutants (pil mutants) deficient in laticifer cells or latex metabolism, and therefore compromised in latex production, allowed us to test the importance of laticifers in pest resistance. We provided genetic evidence indicating that laticifers represent a cellular adaptation for an essential defense strategy to fend off arthropod herbivores with different feeding habits, such as Spodoptera exigua and Tetranychus urticae. In marked contrast, we also discovered that a lack of laticifer cells causes complete resistance to the fungal pathogen Botrytis cinerea. Thereafter, a latex-derived factor required for conidia germination on the leaf surface was identified. This factor promoted disease susceptibility enhancement even in the non-latex-bearing plant Arabidopsis. We speculate on the role of laticifers in the coevolutionary arms race between plants and their enemies

    Splenic rupture as a complication of an infectious mononucleosis

    Get PDF
    Presentamos el caso de un varón de 16 años que consultó en Urgencias por dolor abdominal brusco de varias horas de evolución asociando pérdida de conciencia. En días previos había presentado odinofagia y fiebre alta. En las pruebas complementarias destacaba la presencia de leucocitosis de predominio linfocítico, mientras que tanto la ecografía como la tomografía computarizada desvelaron una rotura esplénica con hemoperitoneo, por lo que se llevó a cabo cirugía urgente (esplenectomía), que cursó sin incidencias. La rotura esplénica supone una situación de emergencia vital en el paciente joven, por lo que una buena anamnesis y exploración física es esencial para así evitar errores en la práctica clínica que puedan conllevar un desenlace potencialmente fatal.We present the case of a 16-year-old male who asked in an emergency department for sudden abdominal pain since many hours and loss of consciousness. Few days before, he had odynophagia and high fever. Leucocytosis with lymphocytosis predominance in analysis and splenic rupture with hemoperitoneum in echography and computerized tomography was shown. The treatment consisted in urgent surgery (splenectomy), which was uneventful. Splenic rupture is an emergency in young patients, so it is essential to do a good anamnesis and physical exploration to avoid mistakes with a potentially fatal outcome

    LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris

    Full text link
    [EN] Laticifers are specialized plant cells capable of indefinite elongation that ramify extensively and are responsible for latex biosynthesis and accumulation. However, the mechanisms underlying laticifer cell differentiation, growth and production of latex remain largely unknown. In a search for mutants showing enhanced accumulation of latex we identified two LOT OF LATEX (LOL) loci in Euphorbia lathyris. lol2 and lol5 mutants show enhanced production of latex contained within laticifer cells. The recessive lol2 mutant carries increased biosynthesis of the plant hormone jasmonoyl-isoleucine (JA-Ile) and therefore establishes a genetic link between jasmonic acid (JA) signaling and latex production in laticifers. Instead, heightened production of latex in lol5 plants obeys to enhanced proliferation of laticifer cells. Phylogenetic analysis of laticifer-expressed genes in E. lathyris and in two other latex-bearing species, Euphorbia corallioides and Euphorbia palustris, allowed the identification of canonical JA responsive elements present in the gene promoter regions of laticifer marker genes. Moreover, we identified that the hormone JA functions not as a morphogen for laticifer differentiation but as a trigger for the fill out of laticifers with latex and the associated triterpenoids. The identification of LOL loci represents a further step towards the understanding of mechanisms controlling latex production in laticifer cells.This work was supported by Spanish MINECO (BFU2015 -68199 -R to P.V.) and Generalitat Valenciana (Prometeo 2014/024 to P.V.).Castelblanque, L.; Balaguer Zamora, B.; Marti, C.; Orozco, M.; Vera Vera, P. (2018). LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris. New Phytologist. 219(4):1467-1479. https://doi.org/10.1111/nph.15253S146714792194Agrawal, A. A., & Konno, K. (2009). Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense Against Herbivory. Annual Review of Ecology, Evolution, and Systematics, 40(1), 311-331. doi:10.1146/annurev.ecolsys.110308.120307Barres, L., Vilatersana, R., Molero, J., Susanna, A., & Galbany-Casals, M. (2011). Molecular phylogeny of Euphorbia subg. Esula sect. Aphyllis (Euphorbiaceae) inferred from nrDNA and cpDNA markers with biogeographic insights. TAXON, 60(3), 705-720. doi:10.1002/tax.603007Becerra, J. X., & Venable, D. L. (1990). Rapid-Terpene-Bath and «Squirt-Gun» Defense in Bursera schlechtendalii and the Counterploy of Chrysomelid Beetles. Biotropica, 22(3), 320. doi:10.2307/2388545Boffelli, D. (2003). Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome. Science, 299(5611), 1391-1394. doi:10.1126/science.1081331Bonaventure, G., Gfeller, A., Rodríguez, V. M., Armand, F., & Farmer, E. E. (2007). The fou2 Gain-of-Function Allele and the Wild-Type Allele of Two Pore Channel 1 Contribute to Different Extents or by Different Mechanisms to Defense Gene Expression in Arabidopsis. Plant and Cell Physiology, 48(12), 1775-1789. doi:10.1093/pcp/pcm151Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., … Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448(7154), 666-671. doi:10.1038/nature06006Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xBary, A. de, Bower, F. O., & Scott, D. H. (1884). Comparative anatomy of the vegetative organs of the phanerogams and ferns; doi:10.5962/bhl.title.56013De Geyter, N., Gholami, A., Goormachtig, S., & Goossens, A. (2012). Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 17(6), 349-359. doi:10.1016/j.tplants.2012.03.001Dombrecht, B., Xue, G. P., Sprague, S. J., Kirkegaard, J. A., Ross, J. J., Reid, J. B., … Kazan, K. (2007). MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis. The Plant Cell, 19(7), 2225-2245. doi:10.1105/tpc.106.048017Dussourd, D., & Eisner, T. (1987). Vein-cutting behavior: insect counterploy to the latex defense of plants. Science, 237(4817), 898-901. doi:10.1126/science.3616620Ellis, C., Karafyllidis, I., Wasternack, C., & Turner, J. G. (2002). The Arabidopsis Mutant cev1 Links Cell Wall Signaling to Jasmonate and Ethylene Responses. The Plant Cell, 14(7), 1557-1566. doi:10.1105/tpc.002022Frame, B. R., Shou, H., Chikwamba, R. K., Zhang, Z., Xiang, C., Fonger, T. M., … Wang, K. (2002). Agrobacterium tumefaciens-Mediated Transformation of Maize Embryos Using a Standard Binary Vector System. Plant Physiology, 129(1), 13-22. doi:10.1104/pp.000653Godoy, M., Franco-Zorrilla, J. M., Pérez-Pérez, J., Oliveros, J. C., Lorenzo, Ó., & Solano, R. (2011). Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. The Plant Journal, 66(4), 700-711. doi:10.1111/j.1365-313x.2011.04519.xHAGEL, J., YEUNG, E., & FACCHINI, P. (2008). Got milk? The secret life of laticifers. Trends in Plant Science, 13(12), 631-639. doi:10.1016/j.tplants.2008.09.005HAO, B. (2000). Laticifer Differentiation in Hevea brasiliensis: Induction by Exogenous Jasmonic Acid and Linolenic Acid. Annals of Botany, 85(1), 37-43. doi:10.1006/anbo.1999.0995Huber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., … Erb, M. (2016). A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLOS Biology, 14(1), e1002332. doi:10.1371/journal.pbio.1002332James, J., Tugizimana, F., Steenkamp, P., & Dubery, I. (2013). Metabolomic Analysis of Methyl Jasmonate-Induced Triterpenoid Production in the Medicinal Herb Centella asiatica (L.) Urban. Molecules, 18(4), 4267-4281. doi:10.3390/molecules18044267Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.xKonno, K. (2011). Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Phytochemistry, 72(13), 1510-1530. doi:10.1016/j.phytochem.2011.02.016Laosombut, T., Arreewichit, P., Nirapathpongporn, K., Traiperm, P., Kongsawadworakul, P., Viboonjun, U., & Narangajavana, J. (2016). Differential Expression of Methyl Jasmonate-Responsive Genes Correlates with Laticifer Vessel Proliferation in Phloem Tissue of Rubber Tree (Hevea brasiliensis). Journal of Plant Growth Regulation, 35(4), 1049-1063. doi:10.1007/s00344-016-9603-4Lescot, M. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327. doi:10.1093/nar/30.1.325Lewinsohn, T. M. (1991). The geographical distribution of plant latex. Chemoecology, 2(1), 64-68. doi:10.1007/bf01240668Lorenzo, O., Chico, J. M., Sánchez-Serrano, J. J., & Solano, R. (2004). JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis. The Plant Cell, 16(7), 1938-1950. doi:10.1105/tpc.022319Mahlberg, P. G. (1961). EMBRYOGENY AND HISTOGENESIS IN NERIUM OLEANDER II. ORIGIN AND DEVELOPMENT OF THE NON-ARTICULATED LATICIFER. American Journal of Botany, 48(1), 90-99. doi:10.1002/j.1537-2197.1961.tb11608.xMahlberg, P. G. (1963). Development of Non-Articulated Laticifer in Seedling Axis of Nerium oleander. Botanical Gazette, 124(3), 224-231. doi:10.1086/336195Mahlberg, P. G. (1993). Laticifers: An historical perspective. The Botanical Review, 59(1), 1-23. doi:10.1007/bf02856611Mahlberg, P. G., & Sabharwal, P. S. (1968). ORIGIN AND EARLY DEVELOPMENT OF NONARTICULATED LATICIFERS IN EMBRYOS OF EUPHORBIA MARGINATA. American Journal of Botany, 55(3), 375-381. doi:10.1002/j.1537-2197.1968.tb07389.xMangas, S., Bonfill, M., Osuna, L., Moyano, E., Tortoriello, J., Cusido, R. M., … Palazón, J. (2006). The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry, 67(18), 2041-2049. doi:10.1016/j.phytochem.2006.06.025Memelink, J., Verpoorte, R., & Kijne, J. W. (2001). ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends in Plant Science, 6(5), 212-219. doi:10.1016/s1360-1385(01)01924-0Mertens, J., Pollier, J., Vanden Bossche, R., Lopez-Vidriero, I., Franco-Zorrilla, J. M., & Goossens, A. (2015). The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula. Plant Physiology, 170(1), 194-210. doi:10.1104/pp.15.01645Mertens, J., Van Moerkercke, A., Vanden Bossche, R., Pollier, J., & Goossens, A. (2016). Clade IVa Basic Helix–Loop–Helix Transcription Factors Form Part of a Conserved Jasmonate Signaling Circuit for the Regulation of Bioactive Plant Terpenoid Biosynthesis. Plant and Cell Physiology, 57(12), 2564-2575. doi:10.1093/pcp/pcw168Metcalfe, C. R. (1967). Distribution of latex in the plant kingdom. Economic Botany, 21(2), 115-127. doi:10.1007/bf02897859Nessler, C. L., & Mahlberg, P. G. (1981). CYTOCHEMICAL LOCALIZATION OF CELLULASE ACTIVITY IN ARTICULATED, ANASTOMOSING LATICIFERS OF PAPAVER SOMNIFERUM L. (PAPAVERACEAE). American Journal of Botany, 68(5), 730-732. doi:10.1002/j.1537-2197.1981.tb12405.xPauwels, L., Inzé, D., & Goossens, A. (2009). Jasmonate-inducible gene: what does it mean? Trends in Plant Science, 14(2), 87-91. doi:10.1016/j.tplants.2008.11.005Pickard, W. F. (2008). Laticifers and secretory ducts: two other tube systems in plants. New Phytologist, 177(4), 877-888. doi:10.1111/j.1469-8137.2007.02323.xPirrello, J., Leclercq, J., Dessailly, F., Rio, M., Piyatrakul, P., Kuswanhadi, K., … Montoro, P. (2014). Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0341-0Ramírez, V., Van der Ent, S., García-Andrade, J., Coego, A., Pieterse, C. M., & Vera, P. (2010). OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC Plant Biology, 10(1), 199. doi:10.1186/1471-2229-10-199Rouster, J., Leah, R., Mundy, J., & Cameron-Mills, V. (1997). Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. The Plant Journal, 11(3), 513-523. doi:10.1046/j.1365-313x.1997.11030513.xSánchez-Bel, P., Sanmartín, N., Pastor, V., Mateu, D., Cerezo, M., Vidal-Albalat, A., … Flors, V. (2017). Mycorrhizal tomato plants fine tunes the growth-defence balance upon N depleted root environments. Plant, Cell & Environment, 41(2), 406-420. doi:10.1111/pce.13105Staswick, P. E., Su, W., & Howell, S. H. (1992). Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences, 89(15), 6837-6840. doi:10.1073/pnas.89.15.6837Suzuki, H., Reddy, M. S. S., Naoumkina, M., Aziz, N., May, G. D., Huhman, D. V., … Dixon, R. A. (2004). Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta, 220(5), 696-707. doi:10.1007/s00425-004-1387-2Tamari, G., Borochov, A., Atzorn, R., & Weiss, D. (1995). Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: A possible role in wound response. Physiologia Plantarum, 94(1), 45-50. doi:10.1111/j.1399-3054.1995.tb00782.

    Diseño de la interface con el usuario y del bastidor del prototipo Endoworn 4.0

    Full text link
    [ES] Endoworm es un proyecto en el que se han involucrado personas de diferentes especialidades tanto en ingeniería y física con profesionales de la Universidad Politécnica de Valencia, así como en medicina, con gastroenterólogos del Hospital Universitari i Politécnic La Fe de Valencia. Este proyecto está en continua evolución desde el 2005 cuando todo empezó. El objetivo es llegar a desarrollar un equipo comercializable para realizar endoscopias de la manera más eficaz y segura. Su uso se centra en la exploración del intestino delgado con la multitud de dificultades que esto puede generar, como la larga longitud del intestino o las trayectorias curvadas que tiene. Hasta el momento los diferentes prototipos han sido testeados con animales. Una vez el proyecto llegue a completarse con sus diferentes elementos y se asegure su fiabilidad, se empezaría a utilizar con humanos. Este proyecto se centra en tres aspectos principales del prototipo Endoworm, todos ellos enfocados en el diseño de varias partes de la máquina. El primero hace referencia a la conexión de los cables, una nueva versión del sistema actual con la que se pretende conseguir una estanqueidad superior y una fijación mucho más ergonómica y fácil de utilizar. El segundo se centra en el bastidor que conforma la máquina, en el que se ha querido mejorar su estructura y accesibilidad con el fin de tener un equipo preparado para la fabricación. El tercero se refiere a la interfaz gráfica. La finalidad ha sido realizar una interfaz mucho más útil e intuitiva para su fácil manejo y uso durante las operaciones. Todo ello con el fin de que Endoworm esté más cerca de un prototipo testeado y comercializable para poder ser usado por médicos en cualquier lugar del planeta.[EN] Endoworm is a project in which people from different specialties have been involved in both engineering and physics with professionals from the Polytechnic University of Valencia, as well as in medicine, with gastroenterologists from the University and Polytechnic Hospital La Fe of Valencia. This project is in continuous evolution since 2005 when everything started. The goal is to build a marketable machine to perform endoscopies in the most efficient and safe way. Its use focuses on the exploration of the small intestine with the multitude of difficulties that this can generate, such as the long length of the intestine or the curved trajectories it has. So far, the different prototypes have been tested with animals. Once the project is completed with its different elements and its reliability is assured, it will begin to be used with humans. This project focuses on three main aspects of Endoworm prototype, on the design of different parts of the device. The first one refers to the connection of the cables, a new version of the current system which is intended to achieve superior tightness and a fixation much more ergonomic and easier to use. The second focuses on the case that makes up the device, with which it has been wanted to improve its structure and accessibility in order to have a case prepared for manufacturing. The third one refers to the graphical interface, the purpose has been to make a much more useful and intuitive interface for easy handling and use during operations. All this in order that Endoworm is closer to a prototype tested and marketable to be used by doctors anywhere in the world.Taulet Castelblanque, J. (2019). Diseño de la interface con el usuario y del bastidor del prototipo Endoworn 4.0. Universitat Politècnica de València. http://hdl.handle.net/10251/127143TFG
    corecore