11 research outputs found

    Nanothermometer based on resonant tunneling diodes : from cryogenic to room temperatures

    Get PDF
    The authors are grateful for financial support by the BMBF via national project EIPHRIK (FKZ: 13N10710), the European Union (FPVII (2007-2013) under grant agreement No. 256959 NANOPOWER and No. 318287 LANDAUER), and the Brazilian Agencies FAPESP (2013/24253-5, 2012/13052-6, and 2012/51415-3), CNPq and CAPES.Sensor miniaturization together with broadening temperature sensing range are fundamental challenges in nanothermometry. By exploiting a large temperature-dependent screening effect observed in a resonant tunneling diode in sequence with a GaInNAs/GaAs quantum well, we present a low dimensional, wide range, and high sensitive nanothermometer. This sensor shows a large threshold voltage shift of the bistable switching of more than 4.5 V for a temperature raise from 4.5 to 295 K, with a linear voltage-temperature response of 19.2 mV K-1, and a temperature uncertainty in the millikelvin (mK) range. Also, when we monitor the electroluminescence emission spectrum, an optical read-out control of the thermometer is provided. The combination of electrical and optical read-outs together with the sensor architecture excel the device as a thermometer with the capability of noninvasive temperature sensing, high local resolution, and sensitivity.PostprintPeer reviewe

    Magnetic Response in a Zigzag Carbon Nanotube

    Full text link
    Magnetic response of interacting electrons in a zigzag carbon nanotube threaded by a magnetic flux is investigated within a Hartree-Fock mean field approach. Following the description of energy spectra for both non-interacting and interacting cases we analyze the behavior of persistent current in individual branches of a nanotube. Our present investigation leads to a possibility of getting a filling-dependent metal-insulator transition in a zigzag carbon nanotube.Comment: 9 pages, 14 figure

    Two vertically coupled quantum rings with tunneling

    No full text
    We study the effect of tunneling on the electronic structure of two vertically coupled quantum rings within the spin density functional theory. The ground state configurations of the coupled rings are obtained for a system with 10 electrons as a function of the ring radius and the inter-ring distance. For small ring radius, our results recover those of coupled quantum dots. For large ring radius, new ground state configurations are found in the strong tunneling regime

    Photocurrent-voltage relation of resonant tunneling diode photodetectors

    Get PDF
    The authors are grateful for financial support by the BMBF via national project EIPHRIK (FKZ: 13N10710), the European Union (FPVII (2007-2013) under Grant Agreement No. 318287 LANDAUER), and the Brazilian Agencies FAPESP (2012/51415-3 and 2012/13052-6), CNPq and CAPES.We have investigated photodetectors based on an AlGaAs/GaAs double barrier structure with a nearby lattice-matched GaInNAs absorption layer. Photons with the telecommunication wavelength λ=1.3 μm lead to hole accumulation close to the double barrier inducing a voltage shift ΔV(V) of the current-voltage curve, which depends strongly on the bias voltage V. A model is proposed describing ΔV(V) and the photocurrent response in excellent agreement with the experimental observations. According to the model, an interplay of the resonant tunneling diode (RTD) quantum efficiency η(V), the lifetime of photogenerated and accumulated charge carriers τ(V), and the RTD current-voltage relation in the dark determines best working parameters of RTD photodetectors. Limitations and voltage dependencies of the photoresponse are discussed.Publisher PDFPeer reviewe

    Quantum–classical correspondence and the role of the dipole function in molecular dissociation

    Get PDF
    AbstractWe consider the quantum and classical dissociation dynamics of heteronuclear diatomic molecules induced by infrared laser pulses. The field–molecule interaction is given by the product of the time-dependent electric field and the molecule permanent dipole. We investigate the influence of the dipole function in molecular dissociation. We show that the dissociation can be suppressed at certain external field frequencies for a nonlinear and finite-range dipole function. The correspondence between quantum and classical results is established by relating classical Fourier amplitudes to discrete–continuum quantum matrix elements

    Non-markovianity Through Accessible Information

    No full text
    The degree of non-Markovianity of quantum processes has been characterized in several different ways in the recent literature. However, the relationship between the non-Markovian behavior and the flow of information between the system and the environment through an entropic measure has not been yet established. We propose an entanglement-based measure of non-Markovianity by employing the concept of assisted knowledge, where the environment E, acquires information about a system S, by means of its measurement apparatus A. The assisted knowledge, based on the accessible information in terms of von Neumann entropy, monotonically increases in time for all Markovian quantum processes. We demonstrate that the signatures of non-Markovianity can be captured by the nonmonotonic behavior of the assisted knowledge. We explore this scenario for a two-level system undergoing a relaxation process, through an experimental implementation using an optical approach that allows full access to the state of the environment. © 2014 American Physical Society.11221Breuer, H.-P., Petruccione, F., (2007) The Theory of Open Quantum Systems, , Oxford University Press, OxfordAlicki, R., Lendi, K., (2007) Quantum Dynamical Semigroups and Applications, , Springer, BerlinBellomo, B., Lo Franco, R., Compagno, G., Non-Markovian effects on the dynamics of entanglement (2007) Physical Review Letters, 99 (16), p. 160502. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.99.160502&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.99.160502Lo Franco, R., Bellomo, B., Maniscalco, S., Compagno, G., (2013) Int. J. Mod. Phys. B, 27, p. 1345053. , IJPBEV 0217-9792 10.1142/S0217979213450537Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I., (2008) Phys. Rev. Lett., 101, p. 150402. , PRLTAO 0031-9007 10.1103/PhysRevLett.101.150402Breuer, H.-P., Laine, E.-M., Piilo, J., (2009) Phys. Rev. Lett., 103, p. 210401. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.210401Rivas, A., Huelga, S.F., Plenio, M.B., (2010) Phys. Rev. Lett., 105, p. 050403. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.050403B. Bylicka, D. Chruściński, and S. Maniscalco, arXiv:1301.2585Luo, S., Fu, S., Song, H., (2012) Phys. Rev. A, 86, p. 044101. , PLRAAN 1050-2947 10.1103/PhysRevA.86.044101Lorenzo, S., Plastina, F., Paternostro, M., (2013) Phys. Rev. A, 88, pp. 020102R. , PLRAAN 1050-2947 10.1103/PhysRevA.88.020102Chruściński, D., Kossakowski, A., (2010) Phys. Rev. Lett., 104, p. 070406. , PRLTAO 0031-9007 10.1103/PhysRevLett.104.070406Lu, X.-M., Wang, X., Sun, C.P., (2010) Phys. Rev. A, 82, p. 042103. , PLRAAN 1050-2947 10.1103/PhysRevA.82.042103Liu, B.-H., Li, L., Huang, Y.-F., Li, C.-F., Guo, G.-C., Laine, E.-M., Breuer, H.-P., Piilo, J., (2011) Nat. Phys., 7, p. 931. , NPAHAX 1745-2473 10.1038/nphys2085Chruściński, D., Kossakowski, A., Rivas, A., (2011) Phys. Rev. A, 83, p. 052128. , PLRAAN 1050-2947 10.1103/PhysRevA.83.052128Vacchini, B., Smirne, A., Laine, E.-M., Piilo, J., Breuer, H.-P., (2011) New J. Phys., 13, p. 093004. , NJOPFM 1367-2630 10.1088/1367-2630/13/9/093004Tang, J.-S., Li, C.-F., Li, Y.-L., Zou, X.-B., Guo, G.-C., Breuer, H.-P., Laine, E.-M., Piilo, J., (2012) Europhys. Lett., 97, p. 10002. , EULEEJ 0295-5075 10.1209/0295-5075/97/10002Chiuri, A., Greganti, C., Mazzola, L., Paternostro, M., Mataloni, P., (2012) Sci. Rep., 2, p. 968. , SRCEC3 2045-2322 10.1038/srep00968Benatti, F., Floreanini, R., Olivares, S., (2012) Phys. Lett. A, 376, p. 2951. , PYLAAG 0375-9601 10.1016/j.physleta.2012.08.044A.M. Souza, arXiv:1308.5761Xu, J.-S., (2013) Nat. Commun., 4, p. 2851. , NCAOBW 2041-1723Liu, J., Lu, X.-M., Wang, X., (2013) Phys. Rev. A, 87, p. 042103. , PLRAAN 1050-2947 10.1103/PhysRevA.87.042103F. Buscemi, arXiv:1307.0363Fanchini, F.F., Karpat, G., Castelano, L.K., Rossatto, D.Z., (2013) Phys. Rev. A, 88, p. 012105. , PLRAAN 1050-2947 10.1103/PhysRevA.88.012105Mannone, M., Lo Franco, R., Compagno, G., (2013) Phys. Scr., T153, p. 014047. , PHSTBO 0031-8949 10.1088/0031-8949/2013/T153/014047A. D'Arrigo, G. Benenti, R. Lo Franco, G. Falci, and E. Paladino, arXiv:1402.1948C. Addis, B. Bylicka, D. Chruściński, and S. Maniscalco, arXiv:1402.4975Plenio, M.B., Virmani, S., (2007) Quantum Inf. Comput., 7, p. 1. , QICUAW 1533-7146Zurek, W.H., (1981) Phys. Rev. D, 24, p. 1516. , PRVDAQ 0556-2821 10.1103/PhysRevD.24.1516Zurek, W.H., (1982) Phys. Rev. D, 26, pp. 1862E. , PRVDAQ 0556-2821 10.1103/PhysRevD.26.1862Zurek, W.H., Decoherence, einselection, and the quantum origins of the classical (2003) Reviews of Modern Physics, 75 (3), pp. 715-775. , DOI 10.1103/RevModPhys.75.715Henderson, L., Vedral, V., (2001) J. Phys. A, 34, p. 6899. , JPHAC5 0305-4470 10.1088/0305-4470/34/35/315Farías, O.J., Aguilar, G.H., Valdés-Hernández, A., Souto Ribeiro, P.H., Davidovich, L., Walborn, S.P., (2012) Phys. Rev. Lett., 109, p. 150403. , PRLTAO 0031-9007 10.1103/PhysRevLett.109.150403Gorini, V., Kossakowski, A., Sudarshan, E.C.G., (1976) J. Math. Phys. (N.Y.), 17, p. 821. , JMAPAQ 0022-2488 10.1063/1.522979Lindblad, G., (1976) Commun. Math. Phys., 48, p. 119. , CMPHAY 0010-3616 10.1007/BF01608499Laine, E.-M., Piilo, J., Breuer, H.-P., (2010) Phys. Rev. A, 81, p. 062115. , PLRAAN 1050-2947 10.1103/PhysRevA.81.062115Breuer, H.-P., (2012) J. Phys. B, 45, p. 154001. , JPAPEH 0953-4075 10.1088/0953-4075/45/15/154001Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wootters, W.K., (1996) Phys. Rev. A, 54, p. 3824. , PLRAAN 1050-2947 10.1103/PhysRevA.54.3824Koashi, M., Winter, A., (2004) Phys. Rev. A, 69, p. 022309. , PLRAAN 1050-2947 10.1103/PhysRevA.69.022309http://link.aps.org/supplemental/10.1103/PhysRevLett.112.21040

    Distribution of persistent currents in a multi-arm mesoscopic ring

    No full text
    We propose an idea to investigate persistent current in individual arms of a multi-arm mesoscopic ring. Following a brief description of persistent current in a traditional Aharonov-Bohm (AB) ring, we examine the behavior of persistent currents in separate arms of a three-arm mesoscopic ring. Our analysis may be helpful in studying magnetic response of any complicated quantum network. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011
    corecore