884 research outputs found

    Quantum computation and the physical computation level of biological information processing

    Full text link
    On the basis of introspective analysis, we establish a crucial requirement for the physical computation basis of consciousness: it should allow processing a significant amount of information together at the same time. Classical computation does not satisfy the requirement. At the fundamental physical level, it is a network of two body interactions, each the input-output transformation of a universal Boolean gate. Thus, it cannot process together at the same time more than the three bit input of this gate - many such gates in parallel do not count since the information is not processed together. Quantum computation satisfies the requirement. At the light of our recent explanation of the speed up, quantum measurement of the solution of the problem is analogous to a many body interaction between the parts of a perfect classical machine, whose mechanical constraints represent the problem to be solved. The many body interaction satisfies all the constraints together at the same time, producing the solution in one shot. This shades light on the physical computation level of the theories that place consciousness in quantum measurement and explains how informations coming from disparate sensorial channels come together in the unity of subjective experience. The fact that the fundamental mechanism of consciousness is the same of the quantum speed up, gives quantum consciousness a potentially enormous evolutionary advantage.Comment: 13 page

    The quantum speed up as advanced knowledge of the solution

    Full text link
    With reference to a search in a database of size N, Grover states: "What is the reason that one would expect that a quantum mechanical scheme could accomplish the search in O(square root of N) steps? It would be insightful to have a simple two line argument for this without having to describe the details of the search algorithm". The answer provided in this work is: "because any quantum algorithm takes the time taken by a classical algorithm that knows in advance 50% of the information that specifies the solution of the problem". This empirical fact, unnoticed so far, holds for both quadratic and exponential speed ups and is theoretically justified in three steps: (i) once the physical representation is extended to the production of the problem on the part of the oracle and to the final measurement of the computer register, quantum computation is reduction on the solution of the problem under a relation representing problem-solution interdependence, (ii) the speed up is explained by a simple consideration of time symmetry, it is the gain of information about the solution due to backdating, to before running the algorithm, a time-symmetric part of the reduction on the solution; this advanced knowledge of the solution reduces the size of the solution space to be explored by the algorithm, (iii) if I is the information acquired by measuring the content of the computer register at the end of the algorithm, the quantum algorithm takes the time taken by a classical algorithm that knows in advance 50% of I, which brings us to the initial statement.Comment: 23 pages, to be published in IJT

    The 50% advanced information rule of the quantum algorithms

    Full text link
    The oracle chooses a function out of a known set of functions and gives to the player a black box that, given an argument, evaluates the function. The player should find out a certain character of the function through function evaluation. This is the typical problem addressed by the quantum algorithms. In former theoretical work, we showed that a quantum algorithm requires the number of function evaluations of a classical algorithm that knows in advance 50% of the information that specifies the solution of the problem. Here we check that this 50% rule holds for the main quantum algorithms. In the structured problems, a classical algorithm with the advanced information, to identify the missing information should perform one function evaluation. The speed up is exponential since a classical algorithm without advanced information should perform an exponential number of function evaluations. In unstructured database search, a classical algorithm that knows in advance 50% of the n bits of the database location, to identify the n/2 missing bits should perform Order(2 power n/2) function evaluations. The speed up is quadratic since a classical algorithm without advanced information should perform Order(2 power n) function evaluations. The 50% rule identifies the problems solvable with a quantum sped up in an entirely classical way, in fact by comparing two classical algorithms, with and without the advanced information.Comment: 18 pages, submitted with minor changes to the International Journal of Theoretical Physic

    Nucleon decay and atmospheric neutrinos in the Mont Blanc experiment

    Get PDF
    In the NUSEX experiment, during 2.8 years of operation, 31 fully contained events have been collected; 3 among them are nucleon decay candidates, while the others have been attributed to upsilon interactions. Limits on nucleon lifetime and determinations of upsilon interaction rates are presented

    Experimental evidence for bounds on quantum correlations

    Full text link
    We implemented the experiment proposed by Cabello [arXiv:quant-ph/0309172] to test the bounds of quantum correlation. As expected from the theory we found that, for certain choices of local observables, Cirel'son's bound of the Clauser-Horne-Shimony-Holt inequality (222\sqrt{2}) is not reached by any quantum states.Comment: RevTex style, 4 pages, 4 figures, to appear on PRL with minor revisio

    Direct measurement of non-linear properties of bipartite quantum states

    Full text link
    Non-linear properties of quantum states, such as entropy or entanglement, quantify important physical resources and are frequently used in quantum information science. They are usually calculated from a full description of a quantum state, even though they depend only on a small number parameters that specify the state. Here we extract a non-local and a non-linear quantity, namely the Renyi entropy, from local measurements on two pairs of polarization entangled photons. We also introduce a "phase marking" technique which allows to select uncorrupted outcomes even with non-deterministic sources of entangled photons. We use our experimental data to demonstrate the violation of entropic inequalities. They are examples of a non-linear entanglement witnesses and their power exceeds all linear tests for quantum entanglement based on all possible Bell-CHSH inequalities.Comment: To appear on PRL with minor change

    Primary cosmic ray spectrum in the 10 to the 12th power - 10 to the 16th power eV energy range from the NUSEX experiment

    Get PDF
    A primary cosmic ray spectrum was derived which fits both experimental multiple muon rates and the all-nucleon flux derived from the single muon intensities underground. In the frame of the interaction model developed by Gaisser, Elbert and Stanev, it is possible to reproduce NUSEX muon data with a primary composition in which the iron spectrum is only slightly flatter than the proton one. This result rules out the popular idea that the primary composition varies drastically with increasing energy, leading to the dominance of heavier nuclei at energies 10 to the 15th power to 10 to the 16th power eV

    Efficacy of a Copper-Calcium-Hydroxide Solution in Reducing Microbial Plaque on Orthodontic Clear Aligners: A Case Report

    Get PDF
    The aim of this study was to investigate the ability of a copper-calcium-hydroxide-based compound to remove microbial plaque naturally produced onto orthodontic clear aligners. A commercially available dental paste, named Cupral, based on copper-calcium-hydroxide, was used. A healthy volunteer (female, 32 years old), undergoing orthodontic treatment with thermoplastic clear aligners was enrolled. By conventional/confocal microscopy and colony-forming unit (CFU) assay, 2-week used aligners were examined for microbial plaque, prior and following exposure to Cupral. Confocal microscopy revealed abundant plaque irregularly distributed onto the aligner surface. Following Cupral treatment, a drastic decrease occurred in plaque thickness and matrix presence. As assessed by the CFU assay, total microbial load approached 10 9 CFUs/aligner, with slight differences in aerobiosis and anaerobiosis culture conditions; six macroscopically different types of colonies were detected and identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Following Cupral treatment, microbial load dropped to undetectable levels, irrespectively of the conditions considered. Exposure of clear aligners to Cupral results in the elimination of contaminating microorganisms; the antimicrobial activity is retained up to 1.25% concentration. Overall, our data describe a novel use of Cupral, a copper-calcium-hydroxide-based compound, in daily hygiene practices with promising results
    corecore