24 research outputs found

    The Gramene Genetic Diversity Module: a resource for genotype-phenotype association analysis in grass species

    Get PDF
    The Genetic Diversity module of the Gramene database ("http://www.gramene.org/diversity":http://www.gramene.org/diversity) is specifically designed to handle data from high-throughput sequencing and array-based genotyping plateforms. Empowered by the Genomic Diversity and Phenotype Data Model, Gramene Genetic Diversity module provides live database connectivities of RFLP, SSR and SNP allele data, information about QTL, passport data for wild and cultivated germplasm from rice, maize, wheat, and _Arabidopsis_, and quantitative phenotypic data for some of these accessions. Large datasets of SNP variation are searchable via genomic positions of interest by SNP Query tool on a sequenced genome; and, trait associations, patterns of linkage disequilibrium and diversity can be evaluated using TASSEL. The Gramene database is updated twice a year, with the most recent release (Build #31) completed in May 2010

    Gramene database in 2010: updates and extensions

    Get PDF
    Now in its 10th year, the Gramene database (http://www.gramene.org) has grown from its primary focus on rice, the first fully-sequenced grass genome, to become a resource for major model and crop plants including Arabidopsis, Brachypodium, maize, sorghum, poplar and grape in addition to several species of rice. Gramene began with the addition of an Ensembl genome browser and has expanded in the last decade to become a robust resource for plant genomics hosting a wide array of data sets including quantitative trait loci (QTL), metabolic pathways, genetic diversity, genes, proteins, germplasm, literature, ontologies and a fully-structured markers and sequences database integrated with genome browsers and maps from various published studies (genetic, physical, bin, etc.). In addition, Gramene now hosts a variety of web services including a Distributed Annotation Server (DAS), BLAST and a public MySQL database. Twice a year, Gramene releases a major build of the database and makes interim releases to correct errors or to make important updates to software and/or data

    Gramene: a bird's eye view of cereal genomes

    Get PDF
    Rice, maize, sorghum, wheat, barley and the other major crop grasses from the family Poaceae (Gramineae) are mankind's most important source of calories and contribute tens of billions of dollars annually to the world economy (FAO 1999, ; USDA 1997, ). Continued improvement of Poaceae crops is necessary in order to continue to feed an ever-growing world population. However, of the major crop grasses, only rice (Oryza sativa), with a compact genome of ∼400 Mbp, has been sequenced and annotated. The Gramene database () takes advantage of the known genetic colinearity (synteny) between rice and the major crop plant genomes to provide maize, sorghum, millet, wheat, oat and barley researchers with the benefits of an annotated genome years before their own species are sequenced. Gramene is a one stop portal for finding curated literature, genetic and genomic datasets related to maps, markers, genes, genomes and quantitative trait loci. The addition of several new tools to Gramene has greatly facilitated the potential for comparative analysis among the grasses and contributes to our understanding of the anatomy, development, environmental responses and the factors influencing agronomic performance of cereal crops. Since the last publication on Gramene database by D. H. Ware, P. Jaiswal, J. Ni, I. V. Yap, X. Pan, K. Y. Clark, L. Teytelman, S. C. Schmidt, W. Zhao, K. Chang et al. [(2002), Plant Physiol., 130, 1606–1613], the database has undergone extensive changes that are described in this publication

    Gramene: a bird's eye view of cereal genomes

    Get PDF
    Rice, maize, sorghum, wheat, barley and the other major crop grasses from the family Poaceae (Gramineae) are mankind's most important source of calories and contribute tens of billions of dollars annually to the world economy (FAO 1999, ; USDA 1997, ). Continued improvement of Poaceae crops is necessary in order to continue to feed an ever-growing world population. However, of the major crop grasses, only rice (Oryza sativa), with a compact genome of ∼400 Mbp, has been sequenced and annotated. The Gramene database () takes advantage of the known genetic colinearity (synteny) between rice and the major crop plant genomes to provide maize, sorghum, millet, wheat, oat and barley researchers with the benefits of an annotated genome years before their own species are sequenced. Gramene is a one stop portal for finding curated literature, genetic and genomic datasets related to maps, markers, genes, genomes and quantitative trait loci. The addition of several new tools to Gramene has greatly facilitated the potential for comparative analysis among the grasses and contributes to our understanding of the anatomy, development, environmental responses and the factors influencing agronomic performance of cereal crops. Since the last publication on Gramene database by D. H. Ware, P. Jaiswal, J. Ni, I. V. Yap, X. Pan, K. Y. Clark, L. Teytelman, S. C. Schmidt, W. Zhao, K. Chang et al. [(2002), Plant Physiol., 130, 1606–1613], the database has undergone extensive changes that are described in this publication

    Gramene: a bird's eye view of cereal genomes

    Get PDF
    Rice, maize, sorghum, wheat, barley and the other major crop grasses from the family Poaceae (Gramineae) are mankind's most important source of calories and contribute tens of billions of dollars annually to the world economy (FAO 1999, ; USDA 1997, ). Continued improvement of Poaceae crops is necessary in order to continue to feed an ever-growing world population. However, of the major crop grasses, only rice (Oryza sativa), with a compact genome of ∼400 Mbp, has been sequenced and annotated. The Gramene database () takes advantage of the known genetic colinearity (synteny) between rice and the major crop plant genomes to provide maize, sorghum, millet, wheat, oat and barley researchers with the benefits of an annotated genome years before their own species are sequenced. Gramene is a one stop portal for finding curated literature, genetic and genomic datasets related to maps, markers, genes, genomes and quantitative trait loci. The addition of several new tools to Gramene has greatly facilitated the potential for comparative analysis among the grasses and contributes to our understanding of the anatomy, development, environmental responses and the factors influencing agronomic performance of cereal crops. Since the last publication on Gramene database by D. H. Ware, P. Jaiswal, J. Ni, I. V. Yap, X. Pan, K. Y. Clark, L. Teytelman, S. C. Schmidt, W. Zhao, K. Chang et al. [(2002), Plant Physiol., 130, 1606–1613], the database has undergone extensive changes that are described in this publication

    The Generation Challenge Programme Platform: Semantic Standards and Workbench for Crop Science

    Get PDF
    The Generation Challenge programme (GCP) is a global crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. A key consortium research activity is the development of a GCP crop bioinformatics platform to support GCP research. This platform includes the following: (i) shared, public platform-independent domain models, ontology, and data formats to enable interoperability of data and analysis flows within the platform; (ii) web service and registry technologies to identify, share, and integrate information across diverse, globally dispersed data sources, as well as to access high-performance computational (HPC) facilities for computationally intensive, high-throughput analyses of project data; (iii) platform-specific middleware reference implementations of the domain model integrating a suite of public (largely open-access/-source) databases and software tools into a workbench to facilitate biodiversity analysis, comparative analysis of crop genomic data, and plant breeding decision making
    corecore