1,942 research outputs found

    Effect of turbulence on electron cyclotron current drive and heating in ITER

    Get PDF
    Non-linear local electromagnetic gyrokinetic turbulence simulations of the ITER standard scenario H-mode are presented for the q=3/2 and q=2 surfaces. The turbulent transport is examined in regions of velocity space characteristic of electrons heated by electron cyclotron waves. Electromagnetic fluctuations and sub-dominant micro-tearing modes are found to contribute significantly to the transport of the accelerated electrons, even though they have only a small impact on the transport of the bulk species. The particle diffusivity for resonant passing electrons is found to be less than 0.15 m^2/s, and their heat conductivity is found to be less than 2 m^2/s. Implications for the broadening of the current drive and energy deposition in ITER are discussed.Comment: Letter, 5 pages, 5 figures, for submission to Nuclear Fusio

    Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach

    Get PDF
    QuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded to include momentum flux modeling in addition to heat and particle fluxes. Essential for accurate momentum flux predictions, the parallel asymmetrization of the eigenfunctions is successfully recovered by an analytical fluid model. This is tested against self-consistent gyrokinetic calculations and allows for a correct prediction of the ExB shear impact on the saturated potential amplitude by means of a mixing length rule. Hence, the effect of the ExB shear is recovered on all the transport channels including the induced residual stress. Including these additions, QuaLiKiz remains ~10 000 faster than non-linear gyrokinetic codes allowing for comparisons with experiments without resorting to high performance computing. The example is given of momentum pinch calculations in NBI modulation experiments

    The linear tearing instability in three dimensional, toroidal gyrokinetic simulations

    Get PDF
    Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro kinetic turbulence code, GKW . The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate and frequency of the mode were investigated by varying the current profile, collisionality and the pressure gradients. Both collision-less and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absense of a pressure gradient is observed which is attributed to toroidal finite Larmor-radius effects. When a pressure gradient is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However the island rotation reverses direction at high collisionality. The growth rate is found to follow a η1/7\eta^{1/7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability using resistive MHD theory, however a modification due to toroidal coupling and pressure effects is seen

    Sexuality demographics and the college admissions process: Implications of asking applicants to reveal their sexual orientation

    Get PDF
    Many universities and colleges are considering if potential students should disclose their sexual orientation when filling out an application for admission. This recent trend, however, has generated a debate among administrators who work directly with LGBT students: What, they wonder, are the various positive and negative implications of quantifying sexual orientation? To address this question, this study utilized a descriptive design and looked at a national LGBT organization of educators, a non-generalizable population of approximately 700 members, in order to identify, categorize, exemplify, and describe the complex issues surrounding a sexual-orientation demographic. The methodology included a combination of quantitative and qualitative measures that were delivered through a seventeen-item, on-line questionnaire. Quantitative responses were analyzed with frequency distributions, percent distributions, disaggregation, and cross tabulations. Qualitative responses relied upon coded assessment derived from grounded theory. Descriptive statistics, for instance, showed that 90% of respondents were aware of the trend and that 41% worked at an institution that had considered adding to its application a demographic for sexual orientation. Descriptive statistics also indicated that respondents were divided among their levels of support for this trend at their own institutions and within academe in general. Coded assessment of the qualitative responses revealed numerous beneficial and detrimental concerns associated with a sexual-orientation demographic

    Charge dependence of neoclassical and turbulent transport of light impurities on MAST

    Get PDF
    Carbon and nitrogen impurity transport coefficients are determined from gas puff experiments carried out during repeat L-mode discharges on the Mega-Amp Spherical Tokamak (MAST) and compared against a previous analysis of helium impurity transport on MAST. The impurity density profiles are measured on the low-field side of the plasma, therefore this paper focuses on light impurities where the impact of poloidal asymmetries on impurity transport is predicted to be negligible. A weak screening of carbon and nitrogen is found in the plasma core, whereas the helium density profile is peaked over the entire plasma radius.Comment: 17 pages, 7 figure

    Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade

    Get PDF
    Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the most peaked boron profiles. The sensitivities of both datasets to possible errors is investigated, and quantitative agreement is found within the estimated uncertainties. The approach used can be considered a template for mitigating uncertainty in quantitative comparisons between simulation and experiment.Comment: 19 pages, 11 figures, accepted in Nuclear Fusio

    Isotope dependence of energy, momentum and particle confinement in tokamaks

    Get PDF
    The isotope dependence of plasma transport will have a significant impact on the performance of future D-T experiments in JET and ITER and eventually on the fusion gain and economics of future reactors. In preparation for future D-T operation on JET, dedicated experiments and comprehensive transport analyses were performed in H, D and H-D mixed plasmas. The analysis of the data has demonstrated an unexpectedly strong and favourable dependence of the global confinement of energy, momentum and particles in ELMy H-mode plasmas on the atomic mass of the main ion species, the energy confinement time scaling as τE∼A0.5 (Maggi et al., Plasma Phys. Control. Fusion, vol. 60, 2018, 014045; JET Team, Nucl. Fusion, vol. 39, 1999, pp. 1227–1244), i.e. opposite to the expectations based only on local gyro-Bohm (GB) scaling, τE∼A−0.5 , and stronger than in the commonly used H-mode scaling for the energy confinement (Saibene et al., Nucl. Fusion, vol. 39, 1999, 1133; ITER Physics Basis, Nucl. Fusion, vol. 39, 1999, 2175). The scaling of momentum transport and particle confinement with isotope mass is very similar to that of energy transport. Nonlinear local GENE gyrokinetic analysis shows that the observed anti-GB heat flux is accounted for if collisions, E × B shear and plasma dilution with low-Z impurities (9Be) are included in the analysis (E and B are, respectively the electric and magnetic fields). For L-mode plasmas a weaker positive isotope scaling τE∼A0.14 has been found in JET (Maggi et al., Plasma Phys. Control. Fusion, vol. 60, 2018, 014045), similar to ITER97-L scaling (Kaye et al., Nucl. Fusion, vol. 37, 1997, 1303). Flux-driven quasi-linear gyrofluid calculations using JETTO-TGLF in L-mode show that local GB scaling is not followed when stiff transport (as is generally the case for ion temperature gradient modes) is combined with an imposed boundary condition taken from the experiment, in this case predicting no isotope dependence. A dimensionless identity plasma pair in hydrogen and deuterium L-mode plasmas has demonstrated scale invariance, confirming that core transport physics is governed, as expected, by the 4 dimensionless parameters ρ*, ν*, β, q (normalised ion Larmor radius, collisionality, plasma pressure and safety factor) consistently with global quasi-linear gyrokinetic TGLF calculations (Maggi et al., Nucl. Fusion, vol. 59, 2019, 076028). We compare findings in JET with those in different devices and discuss the possible reasons for the different isotope scalings reported from different devices. The diversity of observations suggests that the differences may result not only from differences affecting the core, e.g. heating schemes, but are to a large part due to differences in device-specific edge and wall conditions, pointing to the importance of better understanding and controlling pedestal and edge processes.EUROfusion Consortium grant agreement No 63305
    corecore