2,882 research outputs found

    Lithium-Beryllium-Boron Evolution: From Meneguzzi, Audouze and Reeves 1971 Up to Now

    Get PDF
    We review the main sources of LiBeB production and show that a primary mechanism is at work in the early Galaxy involving both ejection and acceleration of He, C and O at moderate energy, which by nuclear interaction with H and He produce light isotopes. The precise measurement of the Be abundance at [Fe/H] = -3.3 and of 6Li^6Li in halo stars find an explanation in this framework. Thus, the preservation of 6Li^6Li in the atmosphere of metal poor stars implied, points toward the fact the Spite plateau reflects the primordial value of Li. Consequently, it can be used as a baryodensitometer.Comment: 6 pages, no figure, invited talk, to be published in World Scientific, Proceedings of the conference "Cosmic Evolution" in the honor of Jean Audouze and James W. Truran, held at the Institut d'Astrophysique de Paris, Franc

    Hypernovae and light dark matter as possible Galactic positron sources

    Full text link
    The electron-positron annihilation source in the Galactic center region has recently been observed with INTEGRAL/SPI, which shows that this 511 keV source is strong and its extension is consistent with the Galactic bulge geometry. The positron production rate, estimated to more than 1043^{43} per second, is very high and raises a challenging question about the nature of the Galactic positron source. Commonly considered astrophysical positron injectors, namely type Ia supernovae are rare events and fall short to explain the observed positron production rate. In this paper, we study the possibility of Galactic positron production by hypernovae events, exemplified by the recently observed SN2003dh/GRB030329, an asymmetric explosion of a Wolf-Rayet star associated with a gamma-ray burst. In these kinds of events, the ejected material becomes quickly transparent to positrons, which spread out in the interstellar medium. Non radioactive processes, such as decays of heavy dark matter particles (neutralinos) predicted by most extensions of the standard model of particle physics, could also produce positrons as byproducts. However they are expected to be accompanied by a large flux of high-energy gamma-rays, which were not observed by EGRET and ground based Tcherenkov experiments. In this context we explore the possibility of direct positron production by annihilation of light dark matter particles.Comment: 8 pages, 0 figures, 35th COSPAR, accepted in July 2005 by Elsevier Science for publication in "Advances in Space Research

    Integral and Light Dark Matter

    Full text link
    The nature of Dark Matter remains one of the outstanding questions of modern astrophysics. The success of the Cold Dark Matter cosmological model argues strongly in favor of a major component of the dark matter being in the form of elementary particles, not yet discovered. Based on earlier theoretical considerations, a possible link between the recent SPI/INTEGRAL measurement of an intense and extended emission of 511 keV photons (positron annihilation) from the central Galaxy, and this mysterious component of the Universe, has been established advocating the existence of a light dark matter particle at variance with the neutralino, in general considered as very heavy. We show that it can explain the 511 keV emission mapped with SPI/INTEGRAL without overproducing undesirable signals like high energy gamma-rays arising from π\pi^\circ decays, and radio synchrotron photons emitted by high energy positrons circulating in magnetic fields. Combining the annihilation line constraint with the cosmological one (i.e. that the relic LDM energy density reaches about 23% of the density of the Universe), one can restrict the main properties of the light dark matter particle. Its mass should lie between 1 and 100 MeV, and the required annihilation cross section, velocity dependent, should be significantly larger than for weak interactions, and may be induced by the virtual production of a new light neutral spin 1 boson UU. On astrophysical grounds, the best target to validate the LDM proposal seems to be the observation by SPI/INTEGRAL and future gamma ray telescopes of the annihilation line from the Sagittarius dwarf galaxy and the Palomar-13 globular cluster, thought to be dominated by dark matter.Comment: 7 pages, 0 figures. To appear in the Proceedings of the 5th INTEGRAL Workshop: "The INTEGRAL Universe", February 16-20, 2004, Munich, German

    Are Magnetic Wind-Driving Disks Inherently Unstable?

    Full text link
    There have been claims in the literature that accretion disks in which a centrifugally driven wind is the dominant mode of angular momentum transport are inherently unstable. This issue is considered here by applying an equilibrium-curve analysis to the wind-driving, ambipolar diffusion-dominated, magnetic disk model of Wardle & Konigl (1993). The equilibrium solution curves for this class of models typically exhibit two distinct branches. It is argued that only one of these branches represents unstable equilibria and that a real disk/wind system likely corresponds to a stable solution.Comment: 5 pages, 2 figures, to be published in ApJ, vol. 617 (2004 Dec 20). Uses emulateapj.cl

    Magnetized Accretion-Ejection Structures: 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks

    Full text link
    We present numerical magnetohydrodynamic (MHD) simulations of a magnetized accretion disk launching trans-Alfvenic jets. These simulations, performed in a 2.5 dimensional time-dependent polytropic resistive MHD framework, model a resistive accretion disk threaded by an initial vertical magnetic field. The resistivity is only important inside the disk, and is prescribed as eta = alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk scale height and the coefficient alpha_m is smaller than unity. By performing the simulations over several tens of dynamical disk timescales, we show that the launching of a collimated outflow occurs self-consistently and the ejection of matter is continuous and quasi-stationary. These are the first ever simulations of resistive accretion disks launching non-transient ideal MHD jets. Roughly 15% of accreted mass is persistently ejected. This outflow is safely characterized as a jet since the flow becomes super-fastmagnetosonic, well-collimated and reaches a quasi-stationary state. We present a complete illustration and explanation of the `accretion-ejection' mechanism that leads to jet formation from a magnetized accretion disk. In particular, the magnetic torque inside the disk brakes the matter azimuthally and allows for accretion, while it is responsible for an effective magneto-centrifugal acceleration in the jet. As such, the magnetic field channels the disk angular momentum and powers the jet acceleration and collimation. The jet originates from the inner disk region where equipartition between thermal and magnetic forces is achieved. A hollow, super-fastmagnetosonic shell of dense material is the natural outcome of the inwards advection of a primordial field.Comment: ApJ (in press), 32 pages, Higher quality version available at http://www-laog.obs.ujf-grenoble.fr/~fcass

    Time-dependent magnetohydrodynamic self-similar extragalactic jets

    Full text link
    Extragalactic jets are visualized as dynamic erruptive events modelled by time-dependent magnetohydrodynamic (MHD) equations. The jet structure comes through the temporally self-similar solutions in two-dimensional axisymmetric spherical geometry. The two-dimensional magnetic field is solved in the finite plasma pressure regime, or finite β\beta regime, and it is described by an equation where plasma pressure plays the role of an eigenvalue. This allows a structure of magnetic lobes in space, among which the polar axis lobe is strongly peaked in intensity and collimated in angular spread comparing to the others. For this reason, the polar lobe overwhelmes the other lobes, and a jet structure arises in the polar direction naturally. Furthermore, within each magnetic lobe in space, there are small secondary regions with closed two-dimensional field lines embedded along this primary lobe. In these embedded magnetic toroids, plasma pressure and mass density are much higher accordingly. These are termed as secondary plasmoids. The magnetic field lines in these secondary plasmoids circle in alternating sequence such that adjacent plasmoids have opposite field lines. In particular, along the polar primary lobe, such periodic plasmoid structure happens to be compatible with radio observations where islands of high radio intensities are mapped

    Neutron-rich nuclei in cosmic rays and Wolf-Rayet stars

    Get PDF
    Wolf-Rayet stars figure prominently in astrophysical research. As a bonus, they seem to offer, in the recent past, an interesting connection between classical astronomy and high energy astrophysics due to their unusual composition and their huge mechanical power. The material flowing from WC stars (carbon-rich WR stars) contains gas which has been processed through core-helium burning, i.e., considerably enriched into 12C,16O, 22Ne, and 25,26Mg. This composition is reminiscent of the cosmic ray source anomalies. Encouraging agreement is obtained with observation in the mass range 12 A 26 assuming acceleration of wind particles at the shock that delineates the WR cavity, and adequate dilution with normal cosmic rays, but silicon poses

    Large scale magnetic fields in viscous resistive accretion disks. I. Ejection from weakly magnetized disks

    Full text link
    Cold steady-state disk wind theory from near Keplerian accretion disks requires a large scale magnetic field at near equipartition strength. However the minimum magnetization has never been tested. We investigate the time evolution of an accretion disk threaded by a weak vertical magnetic field. The strength of the field is such that the disk magnetization falls off rapidly with radius. Four 2.5D numerical simulations of viscous resistive accretion disk are performed using the magnetohydrodynamic code PLUTO. In these simulations, a mean field approach is used and turbulence is assumed to give rise to anomalous transport coefficients (alpha prescription). The large scale magnetic field introduces only a small perturbation to the disk structure, with accretion driven by the dominant viscous torque. A super fast magnetosonic jet is observed to be launched from the innermost regions and remains stationary over more than 953 Keplerian orbits. The self-confined jet is launched from a finite radial zone in the disk which remains constant over time. Ejection is made possible because the magnetization reaches unity at the disk surface, due to the steep density decrease. However, no ejection is reported when the midplane magnetization becomes too small. The asymptotic jet velocity remains nevertheless too low to explain observed jets due to the negligible power carried away by the jet. Astrophysical disks with superheated surface layers could drive analogous outflows even if their midplane magnetization is low. Sufficient angular momentum would be extracted by the turbulent viscosity to allow the accretion process to continue. The magnetized outflows would be no more than byproducts, rather than a fundamental driver of accretion. However, if the midplane magnetization increases towards the center, a natural transition to an inner jet dominated disk could be achieved.Comment: Accepted by Astronomy and Astrophysic

    Two-flow magnetohydrodynamical jets around young stellar objects

    Full text link
    We present the first-ever simulations of non-ideal magnetohydrodynamical (MHD) stellar winds coupled with disc-driven jets where the resistive and viscous accretion disc is self-consistently described. The transmagnetosonic, collimated MHD outflows are investigated numerically using the VAC code. Our simulations show that the inner outflow is accelerated from the central object hot corona thanks to both the thermal pressure and the Lorentz force. In our framework, the thermal acceleration is sustained by the heating produced by the dissipated magnetic energy due to the turbulence. Conversely, the outflow launched from the resistive accretion disc is mainly accelerated by the magneto-centrifugal force. We also show that when a dense inner stellar wind occurs, the resulting disc-driven jet have a different structure, namely a magnetic structure where poloidal magnetic field lines are more inclined because of the pressure caused by the stellar wind. This modification leads to both an enhanced mass ejection rate in the disc-driven jet and a larger radial extension which is in better agreement with the observations besides being more consistent.Comment: Accepted for publication in Astrophysics & Space Science. Referred proceeding of the fifth Mont Stromlo Symposium Dec. 1-8 2006, Canberra, Australia. 5 pages, 3 figures. For high resolution version of the paper, please click here http://www.apc.univ-paris7.fr/~fcasse/publications.htm
    corecore