3,059 research outputs found
Lithium-Beryllium-Boron Evolution: From Meneguzzi, Audouze and Reeves 1971 Up to Now
We review the main sources of LiBeB production and show that a primary
mechanism is at work in the early Galaxy involving both ejection and
acceleration of He, C and O at moderate energy, which by nuclear interaction
with
H and He produce light isotopes. The precise measurement of the Be abundance
at [Fe/H] = -3.3 and of in halo stars find an explanation in this
framework. Thus, the preservation of in the atmosphere of metal poor
stars implied, points toward the fact the Spite plateau reflects the primordial
value of Li. Consequently, it can be used as a baryodensitometer.Comment: 6 pages, no figure, invited talk, to be published in World
Scientific, Proceedings of the conference "Cosmic Evolution" in the honor of
Jean Audouze and James W. Truran, held at the Institut d'Astrophysique de
Paris, Franc
Hypernovae and light dark matter as possible Galactic positron sources
The electron-positron annihilation source in the Galactic center region has
recently been observed with INTEGRAL/SPI, which shows that this 511 keV source
is strong and its extension is consistent with the Galactic bulge geometry. The
positron production rate, estimated to more than 10 per second, is very
high and raises a challenging question about the nature of the Galactic
positron source. Commonly considered astrophysical positron injectors, namely
type Ia supernovae are rare events and fall short to explain the observed
positron production rate. In this paper, we study the possibility of Galactic
positron production by hypernovae events, exemplified by the recently observed
SN2003dh/GRB030329, an asymmetric explosion of a Wolf-Rayet star associated
with a gamma-ray burst. In these kinds of events, the ejected material becomes
quickly transparent to positrons, which spread out in the interstellar medium.
Non radioactive processes, such as decays of heavy dark matter particles
(neutralinos) predicted by most extensions of the standard model of particle
physics, could also produce positrons as byproducts. However they are expected
to be accompanied by a large flux of high-energy gamma-rays, which were not
observed by EGRET and ground based Tcherenkov experiments. In this context we
explore the possibility of direct positron production by annihilation of light
dark matter particles.Comment: 8 pages, 0 figures, 35th COSPAR, accepted in July 2005 by Elsevier
Science for publication in "Advances in Space Research
Integral and Light Dark Matter
The nature of Dark Matter remains one of the outstanding questions of modern
astrophysics. The success of the Cold Dark Matter cosmological model argues
strongly in favor of a major component of the dark matter being in the form of
elementary particles, not yet discovered. Based on earlier theoretical
considerations, a possible link between the recent SPI/INTEGRAL measurement of
an intense and extended emission of 511 keV photons (positron annihilation)
from the central Galaxy, and this mysterious component of the Universe, has
been established advocating the existence of a light dark matter particle at
variance with the neutralino, in general considered as very heavy. We show that
it can explain the 511 keV emission mapped with SPI/INTEGRAL without
overproducing undesirable signals like high energy gamma-rays arising from
decays, and radio synchrotron photons emitted by high energy
positrons circulating in magnetic fields. Combining the annihilation line
constraint with the cosmological one (i.e. that the relic LDM energy density
reaches about 23% of the density of the Universe), one can restrict the main
properties of the light dark matter particle. Its mass should lie between 1 and
100 MeV, and the required annihilation cross section, velocity dependent,
should be significantly larger than for weak interactions, and may be induced
by the virtual production of a new light neutral spin 1 boson . On
astrophysical grounds, the best target to validate the LDM proposal seems to be
the observation by SPI/INTEGRAL and future gamma ray telescopes of the
annihilation line from the Sagittarius dwarf galaxy and the Palomar-13 globular
cluster, thought to be dominated by dark matter.Comment: 7 pages, 0 figures. To appear in the Proceedings of the 5th INTEGRAL
Workshop: "The INTEGRAL Universe", February 16-20, 2004, Munich, German
Time-dependent magnetohydrodynamic self-similar extragalactic jets
Extragalactic jets are visualized as dynamic erruptive events modelled by
time-dependent magnetohydrodynamic (MHD) equations. The jet structure comes
through the temporally self-similar solutions in two-dimensional axisymmetric
spherical geometry. The two-dimensional magnetic field is solved in the finite
plasma pressure regime, or finite regime, and it is described by an
equation where plasma pressure plays the role of an eigenvalue. This allows a
structure of magnetic lobes in space, among which the polar axis lobe is
strongly peaked in intensity and collimated in angular spread comparing to the
others. For this reason, the polar lobe overwhelmes the other lobes, and a jet
structure arises in the polar direction naturally. Furthermore, within each
magnetic lobe in space, there are small secondary regions with closed
two-dimensional field lines embedded along this primary lobe. In these embedded
magnetic toroids, plasma pressure and mass density are much higher accordingly.
These are termed as secondary plasmoids. The magnetic field lines in these
secondary plasmoids circle in alternating sequence such that adjacent plasmoids
have opposite field lines. In particular, along the polar primary lobe, such
periodic plasmoid structure happens to be compatible with radio observations
where islands of high radio intensities are mapped
Are Magnetic Wind-Driving Disks Inherently Unstable?
There have been claims in the literature that accretion disks in which a
centrifugally driven wind is the dominant mode of angular momentum transport
are inherently unstable. This issue is considered here by applying an
equilibrium-curve analysis to the wind-driving, ambipolar diffusion-dominated,
magnetic disk model of Wardle & Konigl (1993). The equilibrium solution curves
for this class of models typically exhibit two distinct branches. It is argued
that only one of these branches represents unstable equilibria and that a real
disk/wind system likely corresponds to a stable solution.Comment: 5 pages, 2 figures, to be published in ApJ, vol. 617 (2004 Dec 20).
Uses emulateapj.cl
Magnetized Accretion-Ejection Structures: 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks
We present numerical magnetohydrodynamic (MHD) simulations of a magnetized
accretion disk launching trans-Alfvenic jets. These simulations, performed in a
2.5 dimensional time-dependent polytropic resistive MHD framework, model a
resistive accretion disk threaded by an initial vertical magnetic field. The
resistivity is only important inside the disk, and is prescribed as eta =
alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk
scale height and the coefficient alpha_m is smaller than unity. By performing
the simulations over several tens of dynamical disk timescales, we show that
the launching of a collimated outflow occurs self-consistently and the ejection
of matter is continuous and quasi-stationary. These are the first ever
simulations of resistive accretion disks launching non-transient ideal MHD
jets. Roughly 15% of accreted mass is persistently ejected. This outflow is
safely characterized as a jet since the flow becomes super-fastmagnetosonic,
well-collimated and reaches a quasi-stationary state. We present a complete
illustration and explanation of the `accretion-ejection' mechanism that leads
to jet formation from a magnetized accretion disk. In particular, the magnetic
torque inside the disk brakes the matter azimuthally and allows for accretion,
while it is responsible for an effective magneto-centrifugal acceleration in
the jet. As such, the magnetic field channels the disk angular momentum and
powers the jet acceleration and collimation. The jet originates from the inner
disk region where equipartition between thermal and magnetic forces is
achieved. A hollow, super-fastmagnetosonic shell of dense material is the
natural outcome of the inwards advection of a primordial field.Comment: ApJ (in press), 32 pages, Higher quality version available at
http://www-laog.obs.ujf-grenoble.fr/~fcass
Neutron-rich nuclei in cosmic rays and Wolf-Rayet stars
Wolf-Rayet stars figure prominently in astrophysical research. As a bonus, they seem to offer, in the recent past, an interesting connection between classical astronomy and high energy astrophysics due to their unusual composition and their huge mechanical power. The material flowing from WC stars (carbon-rich WR stars) contains gas which has been processed through core-helium burning, i.e., considerably enriched into 12C,16O, 22Ne, and 25,26Mg. This composition is reminiscent of the cosmic ray source anomalies. Encouraging agreement is obtained with observation in the mass range 12 A 26 assuming acceleration of wind particles at the shock that delineates the WR cavity, and adequate dilution with normal cosmic rays, but silicon poses
Large scale magnetic fields in viscous resistive accretion disks. I. Ejection from weakly magnetized disks
Cold steady-state disk wind theory from near Keplerian accretion disks
requires a large scale magnetic field at near equipartition strength. However
the minimum magnetization has never been tested. We investigate the time
evolution of an accretion disk threaded by a weak vertical magnetic field. The
strength of the field is such that the disk magnetization falls off rapidly
with radius. Four 2.5D numerical simulations of viscous resistive accretion
disk are performed using the magnetohydrodynamic code PLUTO. In these
simulations, a mean field approach is used and turbulence is assumed to give
rise to anomalous transport coefficients (alpha prescription). The large scale
magnetic field introduces only a small perturbation to the disk structure, with
accretion driven by the dominant viscous torque. A super fast magnetosonic jet
is observed to be launched from the innermost regions and remains stationary
over more than 953 Keplerian orbits. The self-confined jet is launched from a
finite radial zone in the disk which remains constant over time. Ejection is
made possible because the magnetization reaches unity at the disk surface, due
to the steep density decrease. However, no ejection is reported when the
midplane magnetization becomes too small. The asymptotic jet velocity remains
nevertheless too low to explain observed jets due to the negligible power
carried away by the jet. Astrophysical disks with superheated surface layers
could drive analogous outflows even if their midplane magnetization is low.
Sufficient angular momentum would be extracted by the turbulent viscosity to
allow the accretion process to continue. The magnetized outflows would be no
more than byproducts, rather than a fundamental driver of accretion. However,
if the midplane magnetization increases towards the center, a natural
transition to an inner jet dominated disk could be achieved.Comment: Accepted by Astronomy and Astrophysic
Two-flow magnetohydrodynamical jets around young stellar objects
We present the first-ever simulations of non-ideal magnetohydrodynamical
(MHD) stellar winds coupled with disc-driven jets where the resistive and
viscous accretion disc is self-consistently described. The transmagnetosonic,
collimated MHD outflows are investigated numerically using the VAC code. Our
simulations show that the inner outflow is accelerated from the central object
hot corona thanks to both the thermal pressure and the Lorentz force. In our
framework, the thermal acceleration is sustained by the heating produced by the
dissipated magnetic energy due to the turbulence. Conversely, the outflow
launched from the resistive accretion disc is mainly accelerated by the
magneto-centrifugal force. We also show that when a dense inner stellar wind
occurs, the resulting disc-driven jet have a different structure, namely a
magnetic structure where poloidal magnetic field lines are more inclined
because of the pressure caused by the stellar wind. This modification leads to
both an enhanced mass ejection rate in the disc-driven jet and a larger radial
extension which is in better agreement with the observations besides being more
consistent.Comment: Accepted for publication in Astrophysics & Space Science. Referred
proceeding of the fifth Mont Stromlo Symposium Dec. 1-8 2006, Canberra,
Australia. 5 pages, 3 figures. For high resolution version of the paper,
please click here http://www.apc.univ-paris7.fr/~fcasse/publications.htm
- …